# 半乾燥地域における土壌水分量の測定

Measurement of Soil Moisture in a Semi-Arid Region

萩野谷 成徳\*・門田 勤\*\* Shigenori Haginoya and Tutomu Kadota

## はじめに

チベット高原は大気 - 海洋 - 陸域の相互作用を 通じてもたらされる"アジアモンスーン"に影響を与 える最も重要な地域の一つである。チベット高原は 南北 1000km、東西 3000km の広大な地域で中緯度 帯に位置し、平均標高 4000m で対流圏の中ほどに突 き出ている。このため対流圏の中程で地表面と大気 との間で運動量・熱・水蒸気を直接に交換する。そ の結果として力学的効果や熱的効果によりチベット 高原は種々の時間、空間スケールの循環に影響を及 ぼす(村上、1986)。特に熱的効果についてはチベッ ト高原を大気に対する巨大な熱源と見なすことがで きる (チベット高原上の大気の非断熱加熱率は夏季 には 3K/日に達し、世界中で一番大きい(Johnson et al, 1987))。このようなことからチベット高原全体に わたって地表面と大気との間の熱・水収支を明らか にすることはアジアモンスーンの機構解明・予測精 度向上のみならず大気大循環や気候変動を明らかに する上からも大変重要なことである。

チベット高原は大きく2つの気候区に分けられ る。一つは東側の湿潤地域、もう一つは西側の乾燥 地域である。従来の研究から、これら2つの地域の 顕熱と潜熱との比(顕熱/潜熱=ボーエン比)には顕著 な差異があることが知られている(Zhang et al., 1988)。しかしながらこれらの観測は5月から9月の 期間についてであるので通年にわたって熱収支を見 積もることができる信頼のおけるデータはなかった。 最近では、東チベットに展開した自動気象観測装置 (AWS)のデータを用いた通年の解析が進んでいる(Li, et al., 2001)。

一方、西チベットでは 1997 年から AWS による 観測が行なわれ、通年の観測データが得られている。 これから通年の熱収支が明らかになった(Haginoya and Naoe, 2000)。チベット高原の長期の熱収支計算 にはボーエン比法を適用した(Haginoya, 2000)。ボ ーエン比法の利点は次の通りである。(1)風速に含ま れる系統的な誤差がキャンセルされる、(2)ボーエン 比法では正味放射量と地中熱流量を使用するため、 顕熱と潜熱の誤差は正味放射量と地中熱流量の誤差 に対応している。正味放射量と地中熱流量の誤差が 小さければ顕熱と潜熱の誤差も小さくなる。その反 面 2 高度の温度差と湿度差を必要な精度で求めるこ とが要求される。

上で述べたように、現在までに熱収支の通年の 季節変化が得られている。次のステップは「年々変 動の大きさは?」という質問に答えることである。 この方面では既に東チベットに位置するラサのルー チンデータを使ってモデル計算により熱収支の年々 変動を求めた例がある(Xu and Haginoya, 2001)。し かしながら西チベットにおいて年々の熱収支を求め た例はない。

本研究の目的は西チベットにおいて2高度の温 度差・湿度差、放射量および土壌水分量を含む基本 的な気象要素を収集し、同地域における熱収支を複 数年にわたり見積もり、熱収支の季節変化の年々変 動を明らかにすることである。

顕熱と蒸発の潜熱はボーエン比法から求められる が、その一方、降水量と土壌水分量の観測データから

<sup>\*</sup> 気象研究所物理気象研究部

<sup>\*\*</sup> 地球観測フロンティア研究システム水循環観測研究領域

水収支解析をして蒸発量を求めることができる。両者の 比較を行ない、ボーエン比法による熱収支解析結果を チェックしつつ長期間の顕熱・潜熱の変動を求める。

また、半乾燥裸地面において地面状態を客観的に 表わす直接的なパラメータとして土壌水分量が考えられ る。土壌水分量の多寡によってその地域の熱収支特性 も変わってくる。地表面過程のモデルでは蒸発量を支配 するパラメータとして土壌水分量が用いられている(近藤、 1994)。地域の気候分類は現在のところ、土壌水分量の 広域のデータの蓄積がないこと、広域での観測網展開 の困難さ、などから雨量や植生状態など比較的容易に 測定でき、また従来から蓄積されたデータで行っている。 本報告では地表面状態と雨量や土壌水分量にも着目し て観測データを元にした解析結果を紹介する。

## 観測

1997 年 9 月末から 2 基の AWS を西チベットに 設置し、観測を続けている。AWS は保守の容易さと 安全のために既存気象観測所の構内に設置した。第 1 表に観測地点の特徴を示す。第 1 図にチベットの 観測地点を示す。観測地点の一つは西チベットのほ ぼ中央に位置する Gaize (改則)である。ここは東西 方向に緩やかに窪んだ地形になっている。地表面に は短い草が所々に散在する。雨季は草が生い茂り、 乾季は裸地になる。他の地点は Gaize の西 500km 離 れたところに位置する Shiquanhe (獅泉河)である。

| Site name       | Gaize                | Shiquanhe            |  |
|-----------------|----------------------|----------------------|--|
| Latitude        | 32 <sup>°</sup> 18'N | 32 <sup>°</sup> 30'N |  |
| Longitude       | 84 <sup>°</sup> 03'E | 80 <sup>°</sup> 05'E |  |
| Altitude(m)     | 4,420                | 4,279                |  |
| Around the      | flat                 | flat, surrounded     |  |
| topography      |                      | mountain             |  |
| Conditions      | rural                | rural town           |  |
| around the site |                      |                      |  |
| Ground surface  | bare soil, few       | bare soil, no        |  |
| conditions      | grasses              | grass                |  |
| Soil            | Sandy                | Sandy                |  |

第1表 観測地点の特徴

ここはチベット自治区の西端である。ここの地表面 は通年裸地で植物がほとんどない。なお、東チベッ トの4ヶ所(R、L、N および Li)では 1993 年 7 月 ~ 1999 年 3 月まで AWS 観測を行った(Li, et al., 2001)。

本 AWS は地表面熱収支解析に必要な気象要素 を自動的に測り記録する機能を有している。測定要 素は次の項目である。風速(4、2および1m高度)、 気温と相対湿度(3.6m、2m および1m:1997年9 月~1999年9月まで、3.6m および0.5m:1999年 9月以降)、4成分の放射量、地表面放射温度、土壌 水分量(0~15cmと15~30cmの深度:1997年9 月~1999年9月まで、3cm、6~16cm および 16cm ~26cmの3深度:1999年9月~2002年9月まで、 3cm、20cm および 40cm: 2002 年 9 月以降)、 気圧、 降水量、風向、地中熱流量(2.5cm と 7.5cm の 2 深度) そして地温(0、5、10、20、40 および 80cm の6 深 度)。土壌水分計は TRIME 社製 TRIME-EZ を使用 し、0~15cm 等とあるものはセンサを鉛直または斜 めに埋設し、その深さの平均的土壌水分量を測るこ とができるようにした。全てのセンサは CR10X(キ ャンベル社製)により制御されている。記録時間間隔 は1時間である。雨量データは1時間積算値、気圧 および土壌水分量は毎正時の瞬時値、それ以外は10 分平均値または60分平均値である。AWS は太陽電 池とバッテリーで動作し、1時間毎のデータを1年 以上保存するメモリー容量がある。



第1図 チベット自治区内の既存気象観測地点。 S:Shiquanhe、G:Gaize、R:Rikeze、L:Lhasa、N:Nagqu およびLi:Lingzi。

また、GaizeのAWS地点から西へ3~4km離れた地点では土壌水分量と地温の観測(SMTMS)を



写真1 Gaize 観測地点の全景



写真 2 土壤水分計埋設場所



写真3 深度3cmの土壌水分計

2000 年 9 月より行っている。SMTMS の土壌水分計 は 4、20、60、100、160 及び 261cm の 6 深度、地 温計は 4、20、40、60、80、100、130、160、200 および 278cm の 10 深度に埋設した。

写真1は Gaize 観測地点の全景である。北西か ら南東方向を見たところである。AWS は気象台観測 露場の西隣に設置した。写真2は土壌水分計を埋設 した場所。写真左側(丸印内)に土壌水分計が見え る。この時期はまばらに草が生い茂っていた。写真 3は深度3cmの土壌水分計。2002年4月のセンサ 交換時以降表層の土壌が無くなっていた。

#### 気候条件

第2図は第1図中のS、G、L及びLi観測点の 年降水量の年々変動を示す。チベット高原は西側が 年降水量 100mm 程度で乾燥地域、東側が年降水量 600mm ~ 800mm で半湿潤地域である。第3図は Gaize の月平均気温と月降水量の関係である。Gaize は、年降水量 130mm ~ 250mm、年平均気温 0.5 の半乾燥地域に属す。

チベット高原は、従来の研究から東が湿潤、西 が乾燥地域と言われていることを前に述べたが、



第2図 第1図中のS、G、L及びLi観測点の年 降水量の年々変動。1982年~1992年はプロットし ていない。



第3図 Gaize の月平均気温と月降水量の関係

この気候条件をより定量的に定義した指標である気 候湿潤度(WI=Pr/Ep、Pr は年降水量、Ep は年ポテ ンシャル蒸発量)(近藤、1997)を用いてチベット高原 上の気候条件を求めた。使用したデータは既存気象 観測所における 1950年代から 2000年までの降水量 データと気象データである。第4図に気候湿潤度の 空間分布を示す。図からチベット高原上は 0.1 以下 (乾燥地域)から 0.7(半湿潤地域)までの気候区域 に属している。各気候区域の主な観測地点周辺の様 子を写真4~写真7に示す。これから周辺状況はWI で分類した乾燥地帯から半湿潤地帯までの気候区分 に良く対応しているのがわかる。なおチベット高原 では気候湿潤度と無次元年蒸発量(E/Ep、Eは年蒸発 量)の間には実験的関係が得られており、毎年の気候 湿潤度を与えれば、年蒸発量が求められる(Xu & Haginoya, 2001)。この実験的関係は土壌の種類や雨 の降りかた(集中的に降るか平均的に降るか)に依存 する(近藤、1997)。Xu & Haginoya(2001)によると 西チベットの Gaize 観測地点は降水が全て蒸発する 地域と降水の一部が流出する地域の臨界地域 (WI=0.1 の条件)である。



第4図 チベット高原上の気候湿潤度の空間分 布。図中の 印は東からLi、L、G およびS 観測 点。

## 上から写真4~写真7

Lingzi



Semi-humid



Semi-arid



Semi-arid



Arid





第5図 土壌水分と地温の観測例。上から(a)AWS、(b)SMTMS および(c)日降水量。表層付近。

第5図に土壌水分量(体積含水率)と地温の各1 時間値の観測例を示す。(a)は Gaize 気象台構内露場 (AWS)、(b)は気象台から西へ3km~4km離れた地点 (SMTMS)である。いずれも表層付近。(c)は日降水量 である。2地点とも5月以降、降水によるスパイク 状の変動が見られその時期が良く対応している。し かしながら土壌水分量の大きさは2地点で大きく異 なっている。無降水の日も小さな振幅で日変化して いるのが見られる。第6図も同様な図であるが、 20cm 深度のものである。大きな降水に対応して土壌



第7図(a) 日平地温(SMTMS)の深さ-時間断面 図。 Day=0は 2000 年 9 月 1 日



第6図 第5図と同じ。但し、深度 20cm 付近。

水分がスパイク状に変動している。日振幅は表層付 近に比べ小さい。第5図と第6図よりAWS地点と SMTMS地点では30cmまでの深さの土壌構造が かなり異なっていることがわかる。

第7図にSMTMSで測定した(a)地温と(b)土壌 水分量それぞれの深度 - 時間断面図を示す。土壌水 分量の年変動を見ると、雨季の初期にまとまった降 水があると、深部に速やかに浸透しやすい傾向が見 られる。乾季には土壌粒子間に隙間ができるためで はないかと考えられる。それ以外の期間は深度 1m 付近を境にして土壌水分の鉛直方向の移動が困難な 層が存在しているように見える。地表面蒸発や降水 の影響が及ぶのは雨季の初期を除けばせいぜい 1m までと考えられる。



第7図(b) (a)と同じ。但し、日平均土壌水分(SMTMS) の深さ-時間断面図。

## 解析結果と議論

(1)土壌水分量の日変化現象

第8図(a)~(c)は乾季1ヶ月平均(2002年4月1 日~4月30日)の各深さにおける土壌水分計出力の 日変化と地温日変化である。両者の日変化の位相が 良く一致している。すなわち地温が上昇すると土壌 水分も増加している。また振幅も良く対応しており、 温度変化率は約0.07%/である。



第8図 乾季1ヶ月平均した土壌水分計出力の日変 化と地温の日変化。土壌水分計の埋設深度は上から それぞれ、(a)3cm、(b)6-16cm および(c)16-26cm。

無降水時に見られる土壌水分計出力の日振幅の 原因について考える。土壌水分計の温度ドリフトは メーカーマニュアルによると最大±0.5%とある。実 験室で乾燥土壌中(豊浦砂、含水率2~3%)で温度の 日変化(0 以上で日較差~15 )をさせても土壌水 分計出力の日変化は見られないので、センサ自体の 温度依存性ではない。地表面上で夜間結露・日中蒸 発が観測されていれば、土壌水分は地表近くで日中 減少・夜間増加となるが逆のセンスである。また第 8図(a)の日振幅による変動は理論的に予想される結 露量(\*)に比べて~30倍も大きい。山中(2003)による と乾燥土壌に見られる日変化は、誘電率の温度依存 性と土壌の種類による保水率の違いに原因があると して、経験的な補正方法を提案している。

(\*)結露量の見積もり

地表面の熱収支式を解くことにより計算できる。地 表面は飽和しているとして、気温、湿度、下向き放 射、地中熱流量を与え地面温度を未知数として解く。 Gaize の気象データを用いて計算した結露量を第9 図に示す。半乾燥地帯の結露量は最大の月でも1ヶ 月あたり 1mm と少ない。1晩あたりの結露量は 1/30mm 程度である。



第9図 モデルで計算した Gaize における結露量(負の値)の月積算値

(2)冬季の土壌水分量の変動

第10図に冬季の土壌水分量と地温の時間変化 例を示す。初冬地温が0以上から0以下になると 土壌水分量が急激に減少し、翌初春地温が0以下 から0以上になると土壌水分量が急激に増加して いる。0以上に着目すると凍結前と融解後の土壌水 分量の差は1%である。0以下~-6では緩やかな 温度依存性を示す。さて、TDR方式の土壌水分計は 比誘電率を測定し、それと土壌水分量との相関関係 から土壌水分量を推定している。土壌を構成してい



相から見れば高い圧力下 にあり、0 以下でも不凍 水として存在しうる (Hartge、1978)。この不 凍水が温度降下とともに 徐々に凍結している過程 を測定しているのであろ うか。不凍水量の温度依 存性の測定例をみると、 今回の観測例と類似の温 度依存性を示しており、 比表面積の大きい粘土の 不凍水量は大きく、比表 面積の小さい豊浦砂では 殆どゼロである(石崎、 1997)。

第10図 冬季の土壌水分計出力と地温の時間変化例。(a)時系列、(b)凍結開始 ~最低地温起時、(c)最低地温起時~融解終了。

る物質の比誘電率は空気、氷、土壌固相物質および 水、それぞれに対して1、3、約4および約80であ り、水が著しく大きな値を示す。従って土壌中の見 かけの誘電率は土壌中の水分量の値によって大きく 変動する(牛山、2000)。0 付近で土壌水分計の出力 が急激に変化するのは液体水と氷の共存状態で、凍 結時は徐々に氷の割合が増しているため、融解時は 徐々に液体水の割合が増しているためと考えられる。 0 以下で液体水が全て凍結したと考えられる状態 でも土壌水分量に緩やかな温度依存性が見られる。 これは土粒子の表面に強く吸着した水(吸湿水)は固

第2表 各深度毎の凍結前と融解後の土壌水分量の 変化

|         |       | 2 min     | min 2    |        |
|---------|-------|-----------|----------|--------|
| year    | z(cm) | Before(%) | After(%) | A-B(%) |
| '00-01  | 60    | 12.6      | 13.6     | 1.0    |
|         | 100   | 6.4       | 6.6      | 0.2    |
|         | 160   | 10.9      | 11.3     | 0.4    |
| '01-'02 | 60    | 16.6      | 18.4     | 1.8    |
|         | 100   | 7.8       | 7.8      | 0.0    |
|         | 160   | 13.1      | 13.2     | 0.1    |

各深さ毎について凍 結前と融解後の土壌水分

量の変化を調べる(第2表)。0 以上では土壌水分は 凍結していないと考えると、その差は、凍結中の土 壌水分量の増減を表わすと考えられる。60cm 深度で は2000年~2001年冬は12.6%から13.6%へ1%の 増加、2001年~2002年冬は16.6%から18.4%へ 1.8%の増加が見られた。100cmと160cmでは凍結 前・融解後の差は0.4%以下であった。後者の差は土 壌水分計の再現精度±0.3%を考慮すると誤差の範囲 内であるが、前者はそれを上回り、土壌水分が増加 している可能性がある。いずれの冬も冬季に2週間 ~1ヶ月程度の期間積雪が観測されており降水量換 算では、2000年~の冬は4mm、2001年~の冬は 0.4mm であった。半乾燥域の積雪は気温が0 以下 ではほとんど昇華で消失する(近藤、1981)ので 60cm 深度の土壌水分の増加原因を降雪による融雪水とす るのは無理であろう。この原因として、凍結過程で は凍結面よりも下層の自由水(毛管水)を集めて凍結 する(Hartge、1978;八幡敏雄、1975)ことが考えら れる。



写真8~写真12 1998年~2002年の各季節毎 の地表面の様子

写真8~写真12はAWS地点における1998年 から2002年までの暖候期6月~9

月の地面の様子、第11図は5月~9 月の月降水量および地表~30cm 深 度までの月平均土壌水分量の関係を 示す。2001年と2002年は草がかな り茂ったことがわかる。半乾燥地域 では地表面の植物の活動度は降水量



よりも土壌水分量の変動と対応がよく、Gaize では 月平均含水率が20%を超えると植物が良く繁茂する。 当地では1997年9月以来土壌水分計の埋設のやりな おしを何回か、行なっている。乾季は裸地面であっ たところが雨季には草地面になるような年々変動を 繰り返している。また雨季には水溜りができるよう な降水が見られることもある。2002年9月の保守時 には、土壌水分計の埋設場所は地中に耕したような 大きな空隙が見られた。2001年6月~7月や2002 年7月~9月に観測された月平均で20%以上の土壌 水分量はこのために生じていたと考えられる。植物 活動により地中の土壌構造が変質して飽和含水率が 変化(Hartge、1978)した可能性がある。



第11図 月降水量および地表~30cmまでの月平均土壌水分量

#### (4)熱収支解析

第12図に1997年10月から2002年5月まで の月平均の熱収支解析結果を示す。(a)熱収支各要素 の時系列、(b)ボーエン比と降水量、(c)降水量から蒸 発量と地中の貯水量を差し引いた残差。正味放射量 Rnの符号は地表面へ入る時を、顕熱 Hと潜熱 IEお よび地中熱流量 Gの符号は地表面から出て行く時を それぞれ正とした。熱収支式から Rn-G=H+IE。すな わち地面に入る正味放射エネルギーと地中熱流量と の差は顕熱と潜熱の和に等しくなる。RnとGは直 接測定値、HとIEの配分比はボーエン比法で求めた。 (Rn-G)は12月~1月に最小値、6月~8月に最大値 になる。乾季は(Rn-G)の大部分が Hと釣り合ってい る。IE は雨季に大きくなり顕熱を上回る月もある。 潜熱が大きくなり始めるのは雨季の開始に対応して いる。暖候期(5月~9月)では月降水量 Prが増加す るとボーエン比 B は減少する傾向がある。月ポテン シャル蒸発量 Ep で無次元化した無次元降水量 (WI=Pr/Ep、気候湿潤度と同じ)とボーエン比の逆数 1/B の間には良い相関が見られる(第13図)。この関 係は気候湿潤度が大きくなる(湿潤状態になる)とボ ーエン比が小さくなる(顕熱に比べて潜熱の割合が 増す)ことを定量的に表わしている。図で大きく外れ ているデータがある。2001年7月のものであるが、 気候湿潤度と表層(0-15cm 深度)の土壌水分量との関 係を見てみると、この外れたデータは他のデータに 比べて土壌水分量が大きくなっており(第14図参 照)、そのため潜熱の割合が大きくなったと説明でき る。

上でボーエン比法から蒸発量が求められた。次



第12図 1997年10月から2002年5月までの月平均の熱収支解析結果。(a)熱収支各要素の時系列、(b) ボーエン比と降水量、(c)降水量から蒸発量と地中の貯水量を差し引いた残差。

にその解析結果の検討を行う。土壌水分量の時間変 化から地中に蓄積される水分量を見積もることがで きる。降水量(*Pr*)、蒸発量(*E*)、地中貯水量(*SW*)お よび流出量(*R*)の間には、

*Pr=E+ SW+R* (1) の関係が成り立つ。ここで、

R=Pr - E - SW (2)
 として1ヶ月毎の Rを求めたのが第12図(c)である。
 但し、 SWは0~30cmの深さの貯水量である。(c)
 から雨季になると残差 Rが負、すなわち降水量より
 も(蒸発量+貯水量)の方が大きくなる割合が多い傾向
 が見られる。これは他から水が供給さされていることを意味している。この原因を探るために、(2)式右辺の各項の測定誤差を考える。

[1] 降水量の観測誤差は、AWS のデータと気象 台の観測データを比較して~20mm/年と見積もられ る。[2] Haginoya (2000)によるとボーエン比法によ る蒸発量の誤差は~40mm/年である。[3]土壌水分計 の再現精度は、前にも書いたが±0.3%である。

0~30cm での土壌水分量にすると±0.9mm に相当す る。 *SW*は毎月の1日を挟んで前後10日間の平均 値を求め、それの各月毎の差から求めている。その 誤差は±1.8mm/月になる。[1]~[3]から*R*の誤差は 60mm/年+1.8mm/月=5mm/月+1.8mm/月=6.8mm/ 月~6.4W/m<sup>2</sup>となり、第12図(c)の大部分は誤差の

![](_page_9_Figure_5.jpeg)

第13図 暖候季(5月~9月)のボーエン比の逆数 と気候湿潤度との関係。数字は月。

範囲内で R~0 と考えて構わない。

雨季に特に | R | が大きくなる理由には次のこと が考えられる。降水時は地表面の僅かな傾斜や飽和 含水率の水平非一様性により他の場所からの重力水 の流入・流出が考えられる。乾季はそのような水平 非一様性があっても、重力水の流入・流出自体がほ とんどない。よって雨季の誤差が大きくなる。2001 年6月に見られる R の負の値は上記理由により降水 が流入したのではないかと考えられる。なお、Gaize 気象台構内において雨季に大量の雨が降った時、水 溜りが数日間できていることが確認されている。第5 図と第6図においてAWS と SMTMS の同一深度の 土壌水分量に大きな差異が見られていることから、 恐らく気象台構内の方が水溜りになり易い周辺状況 ではないかと推測される。

他から水が供給されている可能性の一つとして 地下水の問題がある。改則気象台構内には井戸があ り、そこで通年の地下水位を測定した。その結果、 地下水位は地下 2.9m から 3.5m の間を 0.6m 近く変 動していること、最も地下水位が上がったのは雨季 入り直前であること、最も下がったのは雨季終了1 ヶ月後であること、が分かった。地下水位の年変動 幅(600mm)は改則の年降水量(~200 mm)の 3 倍も ある。地下水位が 3m の時に毛管現象による水の上 昇(毛管上昇)から求めた蒸発量は、土壌の成層状態や

![](_page_9_Figure_10.jpeg)

第14図 暖候季(5月~9月)の月平均土壌水分量 と月気候湿潤度との関係。数字は月。

気象条件にもよるが均質な粘土質土壌では最大で 0.4mm/日~12.4W/m<sup>2</sup> 程度と見積もられている (Hillel、1998)。これはかなり大きな値である。しか しながら SMTMS のデータから(第7図参照)もわか るように、Gaize 地域には 1m 付近に不透水層が存 在している。今、30cm 以深では SMTMS 地点とAWS 地点の土壌構造が同じと仮定すると、地下水からの 蒸発はほとんどないのではないかと考えられる。

SW の影響のない 1 年間の R を求めると Shiquanhe では降水量と蒸発量がほぼバランスして いる。一方、Gaize では蒸発量が系統的に大きいも のの、[1]と[2]の測定誤差を考慮するとほぼ釣り合っ ているとみなしてよい。この結果は、Xu and Haginoya(2001)の結果と矛盾しない。

#### 問題点

今回は TDR 式土壌水分計の出力からメーカー の検定曲線(関東ローム層で確認済み、同土壌想定) を使用して土壌水分を求めた。より詳細な定量的議 論をするには現地の土壌を使って検定曲線をチェッ クする必要がある。

## まとめ

- 乾季には土壌水分計の顕著な日変化が見られる。
   これは地温との相関が非常に良い。補正方法がいくつか考えられているので今後それを試みる。
- ・ 冬季の土壌水分は2%程度の変動以下では保存さ れるとみなせる。
- 植物の活動度と土壌水分は良い対応がある。植物
   活動の年々変動により土壌構造が変化する可能
   性がある。
- ・ 暖候期の月毎の気候湿潤度とボーエン比の逆数 の間にはかなり良い相関がある。
- 熱収支のチェックをするのに土壌水分データが 有効である。但し、雨季は重力水の流入・流出等 がありそれらが誤差のもとになる。
- ・ 熱収支解析の結果 Shiquanhe と Gaize 共に年降 水量と年蒸発量がバランスしていることが確認 された。

#### 参考文献

- Haginoya, S. and H. Naoe: 2000: Surface Heat
  Balance Observation in the Western Tibet.
  Preprints 15th Conference on Hydrology,
  9-14 Jan., 2000, Long Beach, USA, 301-304.
- Haginoya, S., 2000: Study on the Surface Heat
  Balance in the Tibetan Plateau -Precision of
  Bowen ratio method-. Preprint Volume "The
  Second Session of International Workshop
  on TIPEX and GAME/Tibet", 20-22 July,
  2000, Kunming, China, 19-21.
- Hartge, K.H., 1978: 土壤物理学概論(福士定雄訳、 1985:土壤物理学概論、博友社、pp318.).
- Hillel, D., 1998: Environmental Soil Physics(岩田 進午・内嶋善兵衛監訳、2002:環境土壌物理学 環境問題への土壌物理学の応用、農林統計協 会、pp322.).
- 石崎武志、1997:土の凍結、土の環境圏、KKフジ テクノシステム、pp1388、108 113.
- Johnson, D.R., M. Yanai and T. Schaack, 1987: Global and regional distributions of atmospheric heat sources and sinks during the GWE. Monsoon Meteorology, eds. C.P. Chang and T.N. Krishnamurti, Oxford Univ. Press, 271-297.
- 近藤純正、1981:大気科学講座1 地表に近い大気、 東京大学出版会、pp226.
- 近藤純正編著、1994:水環境の気象学、朝倉書店、 pp350.
- 近藤純正&徐健青 1997: ポテンシャル蒸発量の定義 と気候湿潤度、天気、44、875-883.
- Li G., Duan T., S. Haginoya and L. Chen, 2001: Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data. J. Meteor. Soc. Japan, 79, 625-535.

村上多喜雄、1986:モンスーン、東京堂出版、pp198. 牛山素行編,2000:身近な気象・気候調査の基礎, 古今書院, pp195, 28 44.

- Xu, J. & S. Haginoya, 2001: An estimation of Heat and Water Balances in the Tibetan Plateau.J. Met. Soc. of Japan, 79, 485-504.
- 八幡敏雄、1975:土壌の物理、東京大学出版会、pp181.
- 山中勤&開發一郎、2003:寒冷乾燥地域における土 壌水分の TDR 測定:温度依存と凍結・融解の 影響、TERC WS 報告。
- Zhang, J., B. Zhu, et. al, 1988: Advances in the Qinghai-Xizang Plateau Meteorology. The Qinghai-Xizang plateau meteorological experiment (1979) and research. pp.268.