筑波大学陸域環境研究センターに隣接する アカマツ林の下層植生について

Shrubs in Japanese Red Pine Forest Adjacent to the Terrestrial Environment Research Center, University of Tsukuba

飯田 真一*・濱田 洋平**・安部 豊***・田中 正****

Shin-ichi IIDA*, Yohei HAMADA**, Yutaka ABE *** and Tadashi TANAKA ****

Abstract

Vegetation survey of shrubs was conducted in the warm temperate forest adjacent to the Terrestrial Environment Research Center, Univ. Tsukuba, to obtain the basic information for studying the change of water balance due to the succession from Japanese red pine (*Pinus densiflora* Sieb. Et Zucc.) forest to oak (*Quercus myrsinaefolia* Blume) forest. Referring to previous studies, it is suggested that this succession will complete around 2020 by the simple logistic regression analysis of the decrease in stand density of red pine. The species of shrubs are comprised mainly *Quercus myrsinaefolia* Blume, *Eurya japonica* Thunb. and *Rhus trichocarpa* Misq. The maximum leaf area index (LAI) of the forest increased from 4.0 in 1985-1986 (Sugita and Kotoda, 1987) to 5.0 (\pm 0.3) in 2001-2002: the former and the latter data were measured at the pure forest of red pine, and at the mixed forest, respectively. On the other hand, since the maximum LAI of pine was estimated to be 2.7 (\pm 0.4) in 2001-2002, it decreased due to the decline of red pine's stand density and vegetation activity. It was made clear that there are obvious relationships between diameter at breast height (DBH) and crown projection area or tree height for all tree species. Therefore, it was concluded that DBH is a useful parameter in this forest for determining the forest transpiration or interception loss by sap flux or stemflow measurements.

はじめに

著者らは,筑波大学陸域環境研究センターに隣接 するアカマツ林において大規模なアカマツの毎木 調査を実施し,過去の研究例(山下・林,1987;宇 佐美・及川,1993)との比較検討から,アカマツが 急激に枯死している実態を報告した(飯田ほか, 2001).そして,この原因は,上述の3つの研究例 で述べられているように,下層植生の人為伐採が停 止されたことによる,暖温帯の極相に相当するシラ

^{*} 筑波大学地球科学系

^{**} 長寿科学振興財団

^{***} 筑波大学大学院生命環境科学研究科

^{****} 筑波大学陸域環境研究センター

カシへの二次遷移によるものと考えられる.しかし ながら,飯田ほか(2001)では,下層植生(本研究 ではアカマツを除くすべての木本類および草本類 を指す)を対象とした調査は行われていない.した がって,遷移の進行をより正確に評価するために は,アカマツの減少だけではなく,それに伴う下層 植生の増加を定量的に示す必要がある.

一方,下層植生の蒸散量は上層木のそれに匹敵 するか,それよりも大きいこと(例えば,Black et al.,1996など多数)や,下層植生の樹幹流下量は上 層木よりも大きいこと(村井,1970;鈴木ほか, 1979;Lloyd and Marques,1988)が報告されている. したがって,水文学的な観点から,本林分のよう に遷移が進行した場合では,林分水収支を評価す る上で下層植生の基礎的な情報を得ることが必要 不可欠である.

以上のことを踏まえ,本研究では,下層植生の 樹種構成,ならびに胸高直径(Diameter at Breast Height, DBH)と樹冠投影面積(Crown Projection Area, CPA)および樹高との関係を明らかすること を目的とし,下層植生の植生調査を実施した.

第1図 研究対象地域

調査対象林分の概要および調査方法

調査対象のアカマツ林は,関東ローム層に覆われた洪積台地上に発達した森林であり,陸域環境研究センターの水収支・熱収支観測圃場の南側に位置する(第1図).高木層を形成するアカマツは 典型的な陽樹であり,暖温帯の極相ではない.ア カマツの平均 DBH,立木密度などの基礎的なデー タは,飯田ほか(2001)を参照されたい.

下層植生の調査を行う前に 表層から深度 100 cm までの土壌断面調査を行った(第1表).なお,安 井・及川(1993)によると,本林分の土壌は淡色 クロボク土に分類されている.土壌断面調査の結 果,深度15 cm までがA層,深度15 cm から調査 を行った深度 100 cm までは B 層と識別された.ま た,深度 50~75 cm 付近には斑紋が確認された. 土壌硬度のプロファイル(第2図)は, 深度に伴 う圧密の差を反映し、深度とともに土壌硬度が増 加することを明瞭に示している.そして,斑紋の 土壌硬度は,同深度における通常の土壌に比べて 非常に大きいことがわかる.一方,植生の根系は 主に表層から深度70cmの間に分布しているが深 度 90 cm 以深にも少量ながらアカマツの根系が確 認された.これらの調査結果は,杉田ほか(1986) とほぼ一致する.なお, Iida (2003) によるハンド オーガーを用いた調査の結果、常総粘土層は深度 195 cm 以深に分布していることが判明している. したがって,関東ローム層は,杉田ほか(1986)に よる土壌断面の記載を考慮すると,およそ深度195 cm まで分布しているものと考えられる.

下層植生の植生調査は,本アカマツ林内のほぼ 中央に位置する微気象観測塔を中心に半径15mの 領域を対象として行った.本研究では,下層木の 稚樹と草本類を正確に調査することは困難である ため,樹高4m以上の下層植生を低木層と定義し, これに該当するものを調査対象として,DBHの測 定,および立木位置の特定を2001年7月に行った. なお,樹高4m未満の下層植生を草本層と定義す

Height (cm)	Horizons	Description
+3 to 0	Ao	Litter of Japanese red pine and shrubs
0 to -15	A ₁	Dark brown (10YR3/4), silty loam (SiL) with organic substance, very weak crumb structure, moderate sticky, non- plastic, clearly flat boundary
-15 to -35	B_1	Dark brown (10YR4/4), loam (L), weak angular blocky, moderate sticky, non-plastic, abrupt flat boundary
-35 to -90	B ₂	Brown (7.5YR4/4), silty clay (SiC), moderate angular blocky, slightly sticky, slightly plastic, clearly flat boundary
-90 to	B ₃	Brown (10YR4/6), clay loam (CL), weak angular blocky, sticky, plastic

第1表 土壌断面の記載

Observed on March 13, 2001.

第2図 土壌硬度のプロファイル

る. CPA ならびに樹高は, Iida (2003)が樹液流速 あるいは樹幹流下量を測定した試験木を対象とし て 2001 年 10 月に測定を行った.さらに,林分の 蒸散量や遮断蒸発量に重要な影響を及ぼす葉面積 指数(LAI)を Li-car 社の LAI2000 を用いて推定し た.LAIの測定時期等は後述する. なお,以下に示す調査結果は下層植生の人為伐 採終了から約20年が経過した時点のものであり, 遷移は完了していないことをあらかじめ明記して おく.

調査結果

(1) 下層植生,特に低木層の樹種構成およびその 分布

第3回に低木層の樹種構成を示す.植生調査対 象領域内において低木層の個体数は276と確認さ れた.なお,同一領域内での高木層のアカマツは 48個体であり,低木層の個体数はその5.8倍に相 当する.低木層のうち最も個体数が多いのはシラ カシであり,全個体数の55.8%であった.以下,順 にヒサカキ(27.5%),ヤマウルシ(8.7%)となっ た.したがって,遷移は完了していないが,極相 になるであろうシラカシの割合が最も高い.この3 樹種で低木層の92%が占められている.また,低 木層のおよそ86%は常緑樹で構成されている.一 方,草本類ではアズマネザサとチヂミザサが卓越 している.

- B: Hisakaki (*Eurya japonica* Thunb.)
- C: Yamaurushi (Rhus trichocarpa Misq.)
- D: Konara (Quercus serrata Thunb. ex. Muuray)
- E: Hinoki (Chamaecyparis obutusa (Sieb. Et Zucc.))
- F: Yamazakura (Prunus jamasakura Sieb. ex Koidz)
- G: Kamatsuka (Pourthiaea villosa var. laevis)
- H: Sawahutagi (*Symplocos chinensis* var. leucocarpa forma pilosa)
- I: Sugi (Cryptomeria japonica (Linn. fil.) D. Don)
- J: Kobushi (Magnolia kobus)
- K:Kuri (Castanea crenata Sieb. Et Zucc.)
- L: Shirodamo (Neolitsea sericea (BL.) Koidz.)
- M:Uwamizuzakura (Prunus grayana)
- X: Akamatsu, Japanese red pine (*Pinus densiflora* Sieb. Et Zucc.) for reference

高木層を形成するアカマツおよび主な低木層の 樹木であるシラカシ,ヒサカキ,ヤマウルシの分布 状態を第4図に示す.この図から,低木層の分布に は高い不均一性が見られる.すなわち,仮に一辺5m のコドラートを設定した場合,各々のコドラート内 で確認される低木層の個体数は,最低0,最大11と 大きく異なる.飯田ほか(2001)はアカマツの分布 が不均一であるため,コドラートを設定する場合に は最低でも一辺20mの正方形領域を確保する必要 があることを述べている.アカマツの場合と同様 に,コドラートを用いて下層植生の調査を行う場合 には,その領域の代表性を十分考慮すると同時に, 本研究で行ったように少なくとも400 m²以上の領域 を対象とする必要があるものと考えられる.

第5図 シラカシ(A)およびヒサカキ(B)の胸高直 径のヒストグラム

(2)シラカシ, ヒサカキの DBH のヒストグラムお よび DBH と樹高との関係

シラカシおよびヒサカキのDBHのヒストグラム を第5図に示す.シラカシのDBHの分布幅は0~ 16 cm, ヒサカキのそれは0~10 cm であり, シラ カシの成長の方が相対的に進行していることが分 かる.また,両樹種において,DBHが2~4cmに 属する樹木が卓越していることが分かる.一方,0 ~ 2 cm の階級においては、草本層として識別され, 毎木調査の対象外となったシラカシおよびヒサカ キの稚樹が存在する.したがって,草本層も含め た場合のシラカシおよびヒサカキの0~2 cm に属 する個体数は,2~4 cm の階級のものよりも多い 可能性がある、しかしながら、蒸散量あるいは遮 断蒸発量に及ぼす草本層の影響は小さいものと考 えられるため,第5図に示したヒストグラムは樹 液流速や樹幹流下量の試験木を選定する上で基礎 的な情報となる.

高木層を形成するアカマツ,低木層を構成する シラカシ, ヒサカキの DBH と CPA あるいは樹高 との関係を第6図に示す.DBHとCPAの相関に は, 樹種による顕著な違いは見られず, 決定係数 はおよそ0.7~0.9の高い正の相関が見られた DBH と樹高との関係では、シラカシでは決定係数0.8を 超えた高い正の相関が見られるが,アカマツおよ びヒサカキでは若干相関が低くなっている.この 原因として,アカマツはすでにその成熟期を過ぎ, 樹高の成長が著しくないため, DBH が 20 cm より 大きい樹木で樹高の頭打ち現象が生じていること が考えられる、一方、シラカシとヒサカキの樹高 と DBH との関係は、ヒストグラムの全領域で正の 相関が見られる.これは,両樹種が成長段階にあ るためであると考えられる.また,ヒサカキで決 定係数が低いのは,サンプル数が相対的に少な かったことに起因しているものと判断される.

第6図中の回帰式を用いて,調査対象領域に存 在する低木層のうち,すべてのシラカシ,ヒサカ キ,そして高木層のアカマツについて樹高を推定

第6図 アカマツ,シラカシ,ヒサカキの胸高直径と樹 冠投影面積(A),胸高直径と樹高(B)の関係

第 7 図 アカマツ , シラカシ , ヒサカキの樹高のヒスト グラム

し,樹高のヒストグラムを作成した(第7図).回 帰式から推定されたシラカシとヒサカキの最大樹 高はそれぞれ11.7mと8.6mであり,同様に推定 されたアカマツの平均樹高は15.0mであった.本 林分では,遷移が進行途中にあるため,高木層と 低木層からなる2つのキャノピーが形成されてい ることが明瞭に示されている.

(3)高木層ならびに低木層の植物季節と葉面積指 数の推定および胸高断面積の評価

高木層を形成するアカマツの植物季節について は,すでに杉田・古藤田(1987)によって詳しい 観察が行われている.この研究によれば,アカマ ツの展葉は5月中旬から6月にかけて生じ,10~ 11月にかけて葉の一部が茶色に変色し,落葉する. この結果,アカマツの LAIは 1985~ 1986 年当時 において,展葉後の7月初めに最大値4.0,展葉直 前の 5 月初めに最低値 1.7 であった. Iida (2003) が水収支観測を実施した 2001 ~ 2002 年における アカマツの植物季節は,杉田・古藤田(1987)の 報告と大差はなかったが,展葉は6月初旬には終 了したことが観測されている,2002年の春先は例 年に比べ気温が高い日が多かったため,アカマツ の展葉が比較的早かったことが推察される.展葉 後のアカマツの LAI を, 観測塔の中段, すなわち 低木層の直上で LAI2000 を用いて簡易的に評価し た.この結果,アカマツの最大LAIは2.7(±0.4) となり、アカマツの立木密度の減少および活性の 低下を反映し,LAI の最大値が大幅に減少したこ とが明らかとなった.

一方,低木層のうち落葉広葉樹における展葉は 早いものでは3月下旬から観察され,4月中旬には ほぼ完了した.そして,低木層のうち常緑広葉樹 の展葉は相対的に遅く,4月中旬から5月中旬に見 られた.低木層の展葉がほぼ終了した5月上旬に, 5m間隔で林床面上の合計25地点においてLAI2000 による測定を行った結果,LAI = 5.0(±0.3)とい う値を得た.したがって,高木層および低木層を 合わせた最大 LAI は 単純林であった 1985 ~ 1986 年当時の最大 LAI に比べ増加したことになる.林 分全体の LAI の測定を行った 5 月上旬では,アカ マツの展葉は完全には終了していないため,厳密 な比較はできないが,低木層の LAI はアカマツの それにほぼ匹敵しているものと考えられる.

第 2 表に高木層のアカマツおよび低木層に属す る全樹木の胸高断面積 (basal area)を示す.高木 層および低木層全体の胸高断面積は 22099 cm² と なった.このうち,アカマツは 63.7%に相当する 14072 cm² を占め,低木層に属する樹木は 8027 cm² で全体の 36.3%に相当することが分かる.また,低 木層に属する樹木の胸高断面積のうち,ほぼ半分 がシラカシによって構成されている.

第2表 高木層(アカマツ)と低木層(樹高4m以上の 下層植生)の胸高断面積

	Basal area (cm ²)	Percentage	
Akamatsu	14072	63.7	
Shrubs	8027	36.3	
Total	22099	100.0	
Species of Shrubs			
Shirakashi	4004	49.9	
Hisakaki	1530	19.1	
Others	2493	31.1	
Sub total	8027	100.0	

考察

(1) 樹液流速または樹幹流下量の試験木選定基準 としての DBH

森林の水収支観測を前提として林分構造を把握 する場合,蒸散量や遮断蒸発量の定量的評価を精 度良く行うために,その代表的な試験木を選定す る上で DBH や CPA,樹高は重要な情報である.す なわち,林分の蒸散量や遮断蒸発量を評価するた めに,樹液流速あるいは樹幹流下量の試験木を選 定する場合,さらに,単木の測定値を林分全体へ スケールアップする場合には,DBH のみならず CPA および樹高を考慮する必要がある.しかしな がら,蔵治ほか(1997)が指摘するように,樹幹 流下量を評価する場合,複雑な林分において広範 囲にわたる多数の樹木すべてに対して CPA および 樹高を測定し,試験木の選定および単木から林分 全体へのスケールアップを行うことは現実的では ない.また,樹液流速の評価に関しても同様のこ とが言える.そこで,多くの研究例では,比較的 容易に測定可能なDBHに基づいてこれらの評価を 行う場合が見受けられる.本林分では,DBH は CPA と樹高それぞれに対して明瞭な正の相関を 持っていることから(第6図),林分の代表性を考 慮した樹液流速や樹幹流下量の測定,およびそれ ら解析を行うために,DBHを判断基準として用い ることは妥当であると言える.

(2) 二次遷移の進行の評価

著者らは,1999年におけるアカマツの立木密度 と,山下・林(1987)および宇佐美・及川(1993) を参照し,アカマツの立木密度の変化を明らかに した(飯田ほか,2001;第4図).しかしながら, アカマツの衰退がいつ頃から発生したかについて は触れられていない.そこで,同林分における過 去の研究例(間島・田瀬,1982;出口・田瀬,1983; Sugita, 1984)を参照してデータを追加し, アカマ ツの衰退が発生した時期の推定を行った(第8図). この結果,1985 年以前では顕著な衰退は確認され なかった.したがって,アカマツの衰退は1985年 以降に発生したものと推察される.一方,1985年 および 2001 年におけるシラカシの樹高のヒストグ ラム (第 9 図 A および B) から, シラカシ稚樹が アカマツ林内に定着し,成長していることが分か る.したがって,第7図で示したように,本林分 では高木層と低木層の2つのキャノピーが存在し ていることと併せて考えると,山下・林(1987)が 予測したように、本林分はシラカシ林への遷移過 程にあると判断される.

第8図 アカマツの立木密度の変化 図中の単純ロジスティック式は1985,1992 および 1999 年のデータから回帰した.

なお,1985年のデータは山下・林(1987)から引用した.

アカマツの枯死の原因は,成長に伴う自然間引き や低木層に属する樹木の成長に伴う放射環境の悪 化が考えられる(飯田ほか,2001).一方,本アカ マツ林では、過去に松枯れ病の発生が数回確認され ているため,アカマツの枯死が加速され,その結 果、二次遷移の進行が促進された可能性が考えられ る.第8図中に示した単純ロジスティック式による 回帰結果にしたがえば,2020年頃にはアカマツが ほぼ枯死することが推定される.つまり,下層植生 の伐採が中止された 1980 年を二次遷移の開始時期 と解釈すれば、シラカシ林への二次遷移にはおよそ 40 年間を要するものと考えられる.林(1990)が 冷温帯の菅平で行った遷移過程の解析によると,第 一木本期に相当するアカマツから第二木本期であ るミズナラへの遷移には 32 年を要することが推定 されている.したがって,気候帯と樹種の違いはあ るものの,本林分で推定された二次遷移に要する 40 年間という時間はほぼ妥当な値であり,松枯れ 病そのものは遷移に対してそれほど大きなインパ クトを与えていないものと考えられる.

まとめ

本研究では,高木層(アカマツ)および低木層 (樹高4m以上の下層植生)の蒸散量あるいは遮断 蒸発量を含む森林水収支の評価を行う際に必要と なる,アカマツ林内に存在する下層植生の調査を 行い,その樹種構成,葉面積指数(LAI)を把握 し,胸高直径(DBH)と樹冠投影面積(CPA)お よび樹高との関係を解析した.その結果,以下の ことが明らかとなった.

- 1)低木層の樹種構成は,シラカシが 55.8%,ヒサ カキが 27.5%,ヤマウルシが 8.7%であり,これ らの3樹種で低木層全体の 92%を占める.
- 2)2001 ~ 2002 年における林分の最大 LAI は 5.0
 (±0.3)と推定され、アカマツの単純林であった
 1985 ~ 1986 年当時の最大 LAI = 4.0 に比べ増 加した.また、アカマツのみの最大 LAI は 2.7

(±0.4)と推定され,立木密度の減少やその活性 の低下を反映してアカマツのLAIの減少が確認 された.現時点における低木層のLAIはアカマ ツのそれにほぼ匹敵するものと考えられる.ま た,林分全体の胸高断面積のうち 36.3%が低木 層の樹木によって占められ,その約半分はシラ カシによって構成されていることが明らかと なった.

- 3)高木層のアカマツの平均樹高は 15.0 m,低木層 のシラカシとヒサカキの最大樹高はそれぞれ 11.7 m,8.6 mと推定された.また,これら3樹 種におけるDBHとCPAおよび樹高との間には, 明瞭な正の相関があることが明らかとなった. したがって,樹液流速や樹幹流下量の試験木の 選定,あるいは単木から林分へのスケールアッ プを行う場合,DBHをその基礎データとして用 いることは妥当である.
- 4)飯田ほか(2001)の結果を補足し、またアカマ ツの立木密度の減少を単純ロジスティック式で 回帰した結果、シラカシ林への遷移はおよそ 2020年には完了することが予測された.した がって、2002年現在では、遷移はおよそ半分ま で進行しているものと考えられる.

謝 辞

本研究を行うにあたり,樹種の判別に際し,生物科学研究科の宇佐美哲之氏にさまざまなご教授を頂いた.LAI2000 は生物科学系の及川武久教授から借用させて頂き,またその操作方法については生命環境科学研究科の下田星児氏からご指導を頂いた.また,低木層の樹冠投影面積の測定を行うにあたり,生命環境科学研究科の橋本大輔氏,森美幸氏,杉原修子氏に多大なご協力を頂いた.更に,土壌断面の記載では,当時地球科学研究科に在籍しておられたKasdi Subagyono博士からご協力を頂いた.以上の方々に,厚く御礼申し上げます.

文献

- 飯田真一・濱田洋平・田中 正(2001): 筑波大学 陸域環境研究センターに隣接するアカマツ林 の胸高直径と立木密度の変化について. 筑波 大学陸域環境研究センター報告, 2, 1-6.
- 宇佐美哲之・及川武久(1993):アカマツ林内の光 微環境とシラカシ稚樹の成長特性.筑波大学 水理実験センター報告,17,79-89.
- 蔵治光一郎・田中延亮・白木克繁・唐鎌 勇・太 田猛彦(1997):風速がスギ,ヒノキ壮齢林の 樹幹流下量に及ぼす影響.日本林学会誌,79, 215-221.
- 杉田倫明・山下孔二・古藤田一雄(1986):アカマ ツの形態構造.筑波大学水理実験センター報 告,10,47-52.
- 杉田倫明・古藤田一雄(1987):アカマツ林の葉面 積指数の季節変化.筑波大学水理実験セン ター報告,11,111-112.
- 鈴木雅一・加藤博之・谷 誠・福嶌義宏(1979): 桐生試験地における樹幹通過雨量,樹幹流下 量,遮断量の研究()樹幹通過雨量と樹幹 流下量について.日本林学会誌,61,202-210.
- 出口賢二・田瀬則雄(1983): 平地アカマツ林にお ける蒸散活動と土壌水の挙動について. 筑波 大学水理実験センター報告,7,39-45.
- 林 一六(1990):『植生地理学』大明堂,269p. 間島政紀・田瀬則雄(1982):アカマツ林内の降雨
 - 量の空間的分布について.筑波大学水理実験 センター報告,6,75-82.

- 村井 宏(1970):森林植生による降水のしゃ断につ いての研究.林業試験場研究報告,232,25-64.
- 山下寿之・林 一六(1987):茨城県筑波における アカマツ林からシラカシ林への遷移過程の解 析.筑波大学演習林報告,3,59-82.
- 安井弓子・及川武久(1993):筑波大学構内アカマ ツ林における土壌呼吸速度と微気象環境の日 変化・季節変化特性.筑波大学水理実験セン ター報告,18,77-91.
- Black, T. A., Hartog, G. D., Neumann, H. H., Blanken,
 P. D., Yang, P. C., Russell, C., Nesic, Z., Lee, X.,
 Chen, S. G., Staebler, R. and Novak, M. D. (1996):
 Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. *Global Change Biology*, 2, 219-229.
- Iida, S. (2003): Change of water balance in Japanese red pine forest under the successional process. Doctoral Thesis, University of Tsukuba.
- Lloyd, C. R. and Marques, A. de O. F. (1988): Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. *Agricultural and Forest Meteorology*, **42**, 63-73.
- Sugita, M. (1984): Evapotranspiration from a pine forest. Master Thesis, University of Tsukuba.

(2003年5月30日受付,2003年7月7日受理)