CONTENTS

Preface	 i
Current activities of the AMPEX AMSR/AMSR-E studies [*] 	 1
Progress of IORGC project in northern Mongolia and additional study plan OHATA Tetsuo, KADOTA Tsutomu, ZHANG Yinsheng, ISHIKAWA Mamoru and YABUKI Hironori	 3
RAISE project: summary for the first three years' activities 	 4
Some results of application of flood routing models in the Kherlen River basin 	 7
Budget analysis on groundwater and river water interaction in Kherlen River basin, eastern Mongolia 	 10
Groundwater recharge process in the Kherlen River basin, eastern Mongolia TANAKA Tadashi, ABE Yutaka and TSUJIMURA Maki	 12
Hydrological changes in the upper Tuul River basin DAVAA Gombo and ERDENETUYA Magsar	 16
Recent glacier variations in Mongolia 	 20
Role of snow playing in water cycle in semi-arid region of Mongolia – sublimation (evaporation) of snow cover – 	 23
Hydro-thermal regimes of dry active layer – first two years observations at a grassland site – ISHIKAWA Mamoru, ZHANG Yinsheng, KADOTA Tsutomu, YABUKI Hironori and OHATA Tetsuo	 25
Dynamics of active layer and spring icing at Terelj observation sites, Mongolia 	 29
Impact of interannual variability of meteorological parameters on vegetation activity and predict possibility of vegetation activity over Mongolia 	 31
Influence of grazing on surface heat balance, vegetation and carbon dioxide flux over the Mongolian grassland 	 35
Aircraft turbulence measurements to estimate surface heat fluxes from the mixed layer variance methods over semi-arid grassland	~-
Estimation of evapotranspiration in northeastern Mongolia combining satellite data and ground data MATSUURA Yosuke, and MATSUSHIMA Dai	37 40

Comparison of several properties between the soils under the natural grassland and the abandoned field in the Kherlen River basin, Mongolia		
HOSHINO Aki, TAMURA Kenji, ASANO Maki and HIGASHI Teruo		44
Isotopic variation of precipitation over eastern Mongolia 		46
Overlandflow generation and surface erosion in Mongolia 		48
Spatial variation and long-term change of hydrological regime of Kherlen River basin, Mongolia KAMIMERA Hideyuki, LU Minjiao, DOI Hironori, OYUNBAATAR Dambaravjaa and DAVAA Gombo		50
Micro-climate on sparse grassland of Nalaikh, Mongolia 		54
Use of geoelectric and neutron methods to investigate water condition of the frozen ground, Mongolia ISHIKAWA Mamoru, SHARKHUU Natsagdorj, DORJGOTOV Battogtokh, BYAMBADEMBEREL D., KADOTA Tsutomu and OHATA Tetsuo		56
Modeling approach to the atmosphere-hydrosphere-biosphere interactions in Mongolia SATO Tomonori, LEE Giljae, LU Minjiao, LEE Pilzae, CHEN Yuxiang, KAMIMERA Hideyuki, KIMURA Fujio, OIKAWA Takehisa and SUGITA Michiaki		60
Some features on a "break" in rainy season over Mongolia 		62
Groundwater flow system in Kherlen River basin revealed by environmental tritium 		66
Hydrological processes in Kherlen River basin revealed by isotope tracer approaches 		70
The characteristics of soils at the steppe of Kherlen River basin, Mongolia ASANO Maki, TAMURA Kenji, MAEJIMA Yuji, MATSUZAKI Hiroyuki and HIGASHI Teruo		72
Digital atlas of Mongolian natural environments (1) vegetation, soil, ecosystem and water SAANDAR M. and SUGITA Michiaki		75
Some results of spectral reflectance of vegetation-soil associations in the Kherlen River basin under RAISE projection and ADYASUREN Tsokhio, BYAMBAKHUU Ishgaldan, MATSUSHIMA Dai, GANBAATAR Tumur, MUNKHBAT Tsendeekhuu and SUGITA Michiaki		77
Preliminary report of environmental regulation of xylem sap-flow at the northern faced forest slope IIJIMA Yoshihiro, ISHIKAWA Mamoru, SUZUKI Kazuyoshi, DORJGOTOV Battogtokh, SHARKHUU Natsagdorj, KADOTA Tsutomu and OHATA Tetsuo		78
Thermal balance features in the Terelj valley (Mongolia) Tuvshinjargal D. and Saranbaatar L.		82
An estimation of areal distribution of evapotranspiration over Khentii region using a combination of satellite data and a heat budget model MATSUSHIMA Dai, MATSUURA Yosuke, BYAMBAKHUU Ishgaldan and ADYASUREN Tsokhio		Q1
Development of a physically based model for soil water and heat transfer processes in semi-arid cold region		
DOI Hironori, LU Minjiao and KAMIMERA Hideyuki	•••••	88

Water balance for a Mongolian steppe and its environmental constraints LI Sheng-Gong, ASANUMA Jun, KOTANI Ayumi, DAVAA Gombo, OVI JUD A A DTA D. Domborration and SUCITA Michighia
OYUNBAARTAR Dambaravjaa and SUGITA Michiaki 92 Seasonal dynamics of biomass and carbon dioxide fluxes in a Mongolian grassland URANO Tadaaki, MARIKO Shigeru, KAWADA Kiyokazu and OIKAWA Takehisa 95
The estimation and validation of CO ₂ /H ₂ O fluxes in Mongolia using Sim-CYCLE HR LEE Pilzae, LEE Gilzae, CHEN Yuxiang, MARIKO Shigeru and OIKAWA Takehisa 97
Effect of grazing on net primary production of a Mongolian grassland ecosystem CHEN Yuxiang, LEE Gilzae, LEE Pilzae, MARIKO Shigeru and OIKAWA Takehisa 100
Extraction of vegetation state using ADEOS-II/GLI data MURAMATSU Kanako, XIONG Yan, Ide Saori and KAIHOTSU Ichirow 103
Cloud frequency in eastern Mongolia and its relation to the orography SATO Tomonori, KIMURA Fujio and HASEGAWA Akira 107
Downscaling of precipitation over Mongolia using regional climate model KIMURA Fujio and SATO Tomonori 110
The impact of desertification on Mongolian climate and its numerical study using regional climate model (RegCM3)
Climate change effect on grasshopper (Agrididae) and Brandt's vole (Microtus brandtii Radde) in Mongolia
The establishment of the network Gateway database FAO to natural resource and environment information in Mongolia

GAN-ULZII A. and DULAMSUREN D. 115