# 微気象学的スケールにおける 大気水蒸気同位体組成の空間構造

The Spatial Structure of Isotopic Composition of Atmospheric Water Vapor at Micrometeorological Scale

清水 亮介\*·山中 勤\*\*

Ryosuke SHIMIZU<sup>\*</sup> and Tsutomu YAMANAKA<sup>\*\*</sup>

# I はじめに

豪雨や旱魃などの自然災害を引き起こす降水 量変動機構の解明には、大気中の水循環過程、特 に降水の起源となる水蒸気の輸送経路や供給源に 関する知見が不可欠である.大気中の水循環をト レースする上で、水の安定同位体は有力なツール であり、近年さまざまな研究が行われてきた.山 中ほか(2001)は関東平野の夏期の対流性降雨に おける同位体組成の空間分布特性が、異なる起源 (すなわち、海洋起源と陸域起源)の水蒸気の混 合によってもたらされている可能性を指摘した. しかし、水蒸気同位体組成の空間分布の実測は行 われていない.

大気水蒸気の同位体は Yakir and Wang (1996) による"Keeling plot"を用いた解析以降,主に 蒸発散フラックスの成分分離を目的として使用さ れてきている.例えば, Moreira *et al.* (1997)で はアマゾン川流域内の植生の異なる環境下(草地 と森林)で水蒸気のサンプリングを行い,その同 位体組成から大気中への水蒸気輸送のほとんどが 蒸散によるものであるという結果を導き出した. また,He and Smith (1999) は航空機を用いて大 気境界層内外の水蒸気サンプリングを行い,蒸発 散によって森林から大気へ供給される水蒸気の同 位体組成を推定した.綱川・山中(2005)では蒸 発散フラックスにおける蒸散の寄与が,LAIの上 昇とともに増大することを示した.しかし,いず れの研究も鉛直一次元の水蒸気輸送に焦点を当て ているものであり,三次元的な分布や混合プロセ スに言及した研究は例を見ない.

そこで本研究では,関東平野の降水における陸 域起源水蒸気の寄与を明らかにするための基礎研 究として,大気水蒸気同位体組成の土地被覆によ る違いや,水蒸気混合プロセスについての考察を 行うことを目的として,複数の地点配置で水蒸気 のサンプリングを行った.

### II 研究方法

#### 1. サンプリング地点

同位体分析のための水蒸気サンプリングは2つ の地点配置で行った(第1図).気象学の一般的 なスケール区分によれば、これらの空間スケー

<sup>\*</sup> 筑波大学生命環境科学研究科大学院生

<sup>\*\*</sup> 筑波大学陸域環境研究センター

ルはマイクロスケールに分類される(Orlanski, 1975). ここでは便宜上これらの地点配置をそれ ぞれマイクロスケール a 及びマイクロスケール bと呼ぶ.マイクロスケール a (第1図 a) での サンプリングは,主に鉛直方向のデータを充実さ せることを目的とし,筑波大学陸域環境研究セン ター(以下TERC)の草地タワー(3高度:1m, 12m,および 30 m),松林タワー(2高度:1mお よび 26 m)及び近隣の水田(高度 1 m)で行っ た.マイクロスケールb(第1図 b)ではTER Cの2地点に加えて,筑波大学の研究棟(総合研 究棟 A 及び自然系学系棟 B 棟)の屋上でサンプ リングを行った.マイクロスケールbを考慮した のは,より高い高度での空間分布データを充実さ せるためである.



 第1図 サンプリング地点配置
(A:草地タワー,B:松林タワー,C: 水田,D1:総合研究棟A棟,D2:自然 系学系棟B棟)

## 2. サンプリングと同位体分析

水蒸気のサンプリングは低温凝結法(綱川・山 中,2005)を用いて行った.実験に供した装置の 模式図を第2図に示す.エアーポンプ(SIBATA: MP - 2N)によって空気を吸引し,その中に含 まれる水蒸気を液体窒素(-196℃)で冷却した トラップ管内に凝結させ,採取した.低高度での サンプリングは地上1mに統一し,三脚で吸引 用チューブを固定した.TERCの草地タワーと松 林タワーについては,チューブをタワー上部まで 引き上げ,地上で空気を吸引して水蒸気を捕捉し た.他の高高度サンプリングについては,屋上に 三脚を設置し,地上1mと同様にサンプリング を行った.

水蒸気サンプリングと同時に,気温と湿度の測 定を併せて行った.ポンプ(EMP:CM-15)に よって通風する密閉容器の中に,温湿度計つきの データロガー(Onset:HOBO RHTemp)を入れ, 気温と相対湿度を1分間隔で測定した.これらの 測定値から水蒸気混合比を計算した.

A地点ではサンプリング実施日に土壌水のサン プリングを行った.土壌水は表層3cmの土壌を スコップで100ccほど採取し,遠心分離法によっ て土壌水を抽出した.遠心分離はpF4.3相当の回 転数で2時間行った.土壌の乾燥状態により,こ の方法では抽出できないものもあったが,それに



第2図 水蒸気トラップ装置模式図

ついては欠測とした.

採取した水蒸気サンプルと土壌水の同位体組成 は、筑波大学大学院生命環境科学研究科の同位体 比質量分析計(Thermo Finnigan: MAT252)で 測定した.試水の前処理は、水素については白金 触媒を用いた水素ガス平衡法、酸素については二 酸化炭素平衡法によって行った.なお、測定結果 は標準平均海水 V-SMOW からの千分率偏差、 すなわち $\delta$ 値表記を用いて記述する.同位体分析 の誤差は、 $\delta$ Dで±1‰、 $\delta$ <sup>18</sup>Oで±0.1‰である. 綱川・山中(2005)では低温凝結法によって採取 された水蒸気の $\delta$ <sup>18</sup>Oの精度に問題があることが 報告されているため、以下の解析では主に $\delta$ Dの 値を使用して行った.

サンプリングの実施日と採取時間帯をまとめて 第1表に示す.なお草地タワーの水蒸気混合比を 計算するため,陸域環境研究センターのルーチン 観測データから、3 高度(1.2 m, 12.0 m, 29.5 m) の気温と相対湿度,および気圧のデータを使用 した(URL: http://www.suiri.tsukuba.ac.jp/hojyo/ Japanese/database.html).

第1表 サンプリング日時一覧

| 番号 | 日付         | 開始時刻  | 終了時刻  |
|----|------------|-------|-------|
| 1  | 2004年4月16日 | 11:30 | 13:00 |
| 2  | 4月16日      | 14:30 | 16:00 |
| 3  | 4月26日      | 14:00 | 16:00 |
| 4  | 6月10日      | 14:00 | 15:30 |
| 5  | 6月14日      | 15:00 | 16:30 |
| 6  | 6月24日      | 14:30 | 16:00 |
| 7  | 7月1日       | 14:00 | 15:00 |
| 8  | 7月19日      | 12:00 | 13:30 |
| 9  | 7月22日      | 11:00 | 12:00 |
| 10 | 7月22日      | 12:00 | 13:00 |
| 11 | 7月26日      | 11:00 | 12:00 |
| 12 | 7月26日      | 12:00 | 13:00 |
| 13 | 8月6日       | 11:00 | 12:00 |
| 14 | 8月6日       | 12:00 | 13:00 |
| 15 | 8月10日      | 11:00 | 12:00 |

# 3. 解析方法

水蒸気の起源や混合様式を把握するため, Keeling plot (Keeling, 1961; Yakir and Wang, 1996)を用いた解析を実施した.この解析手法 は、He and Smith (1999) によって示された Mixing Line Method と導出の過程は異なるもの の,本質的には同じ解析手法であり,陸域から大 気への水蒸気フラックス(蒸発散フラックス)の 同位体組成(δF)を求めることができる.具体的 には、複数点での水蒸気の同位体組成(δ)と水 蒸気混合比(Q)を求め、それをδ-1/Qのダイア グラムにプロットする (第3図). この手法では、 バックグラウンド大気(概ね混合層もしくはそ れ以上の大気層に相当)にもともと存在する水蒸 気(以下,バックグラウンド水蒸気)と地表面か らの蒸発散フラックスによって新たに供給される 水蒸気(以下,ローカルソース水蒸気)とが混合 する過程を想定しており,バックグラウンド水蒸 気の同位体組成が広域的に一様であり、かつロー カルソース水蒸気が同位体的に2種類存在する場 合, 地表付近の大気水蒸気のデータは図のように 2つの傾向線上もしくはその間にプロットされ、 その傾向線を外挿して得られる Y 切片の値が δF となる.



第3図 Keeling plot の模式図

### Ⅲ 結果と考察

#### 1. 異なる土地被覆上での鉛直分布

マイクロスケールaでは計4回の水蒸気サンプ リングを行った. 代表として 2004 年 6 月 10 日の δD 鉛直プロファイルを第4図に示す.他の観測 結果とも共通して言えることは、高度が大きくな るにつれて∂値が低下するということである. 一 般に、水蒸気が凝結や降水によって取り除かれる 場合は、同位体的に重い水蒸気が優先的に取り除 かれるため、水蒸気の同位体組成は上空にいくほ ど軽い(He and Smith, 1999).本研究の結果もこ の傾向が顕著に現れている.地上1mに注目する と、草地と水田はよく一致しているが、松林は草 地と150 m 程度しか離れていないのにもかかわ らず値が異なっている.このような結果は乱流混 合の違いによるものと考えられる. すなわち, 草 地や水田のように周囲が開けている環境では周囲 や上空との水蒸気混合が起こりやすいが、松林の キャノピー内部は外部との混合が起こりにくい.

このため、松林のキャノピー内では水蒸気同位 体組成が異なると考えられる.一方、キャノピー の上(高度26m)の水蒸気同位体組成は、草地 30mのものとおおむね一致し、よく混合されて いると考えることができる.



第4図 マイクロスケール a における δD の鉛直 プロファイル (6/10) (A:草地タワー, B:松林タワー, C:水田)

6月10日の測定データを用いた Keeling plot を第5図に示す.なお、Keeling plotの横軸は混 合比の逆数を取っているため、相対的に水蒸気<br /> 量が多い低高度のデータは左寄りにプロットされ る、全てのデータが概ね一直線状にプロットされ ており、同位体組成が一様なバックグラウンド大 気中の水蒸気と同位体的に均質な地表面起源の水 蒸気とが混合することによって、地上付近の大気 水蒸気の同位体組成が決定されていることがうか がえる.ここで.松林内の高度1mにおけるデー タに注目してみると、やや左上にシフトしてい るように見える. この Keeling plot 上では、右下 部にバックグラウンド水蒸気、左上部にローカル ソース水蒸気が位置することになるため、上述の シフトはローカルソース水蒸気側に寄っているこ とになる.以上から、周囲との水蒸気混合が起き にくいような地点では,他の地点と比較してロー カルソース水蒸気を多く含み、その同位体組成に 近くなることが示唆された.

#### 2. 高高度での空間分布特性

マイクロスケールbでのサンプリングにおける δDの鉛直プロファイルを第6図に示す.その結 果を見ると,多少の差異はあるものの,ほぼ同位



 第5図 マイクロスケールaのKeeling plot (6/10)
(A:草地タワー, B:松林タワー, C:水田)

体分析の誤差範囲内で高高度の δD 値が一致して いる.また同実験についての Keeling plot (第7 図)では、プロット全体がほぼ一つの直線上に位 置している.これらの特徴は少なくとも 20 m以 上の高度においては同位体組成の空間的差異が小 さくなるとともに、バックグラウンド水蒸気の同 位体的一様性が保たれている結果であると考えら れる.

# マイクロスケールにおけるバックグラウンド 水蒸気とローカルソース水蒸気

A 地点ではすべてのサンプリング実施日におい て高度1mと30mでの水蒸気サンプリングが行 われている.それぞれの高度のδD値と土壌水のδ



第6図 マイクロスケール b における &D の鉛直 プロファイル (6/24) (A:草地タワー, B:松林タワー, D1:

総合研究棟A棟,D2:自然系学系棟B棟)





D 値および Keeling plot から求められた蒸発散フ ラックスの同位体組成(δD<sub>F</sub>)の時系列を第8図 に示す. この図において,水蒸気の δD 値に単純 な季節変化は見られず、日々変動が大きいことが わかる. 地上1mの水蒸気は低い高度ではある が、地上からもたらされた蒸発散フラックスであ る δD<sub>r</sub>値よりはむしろ 30 mの水蒸気の δD 値に近 い. 地上1mと30mの oD 値はほぼ一定間隔で 推移しており、たとえ地上1mという低い高度 であっても、バックグラウンド水蒸気の同位体組 成を強く反映するということが分かる. このこと から、地上付近の水蒸気におけるこの日々変動は 地表面からもたらされた水蒸気の影響ではなく. バックグラウンド水蒸気そのものが同位体組成の 異なる気団の流入などにより大きく変動すること に原因があると考えられる.

 $\delta D_F$ 値は一部で大きな値を示すものの概ね土壌 水の  $\delta D$ 値の変動幅(-40~-60‰)に収まってい る.このことから,実験期間中においては,ロー カルソース水蒸気の同位体組成は安定しており, 土壌水の値に近いことから同位体分別の起こらな い蒸散がソースの水蒸気として常に卓越している ことが示唆される.

Keeling plot 解析は外挿によって  $\delta D_F$  値を推定 するため、水蒸気混合比や同位体組成の測定の精 度によっては  $\delta D_F$  値を大きく変動させてしまう. 7月と 8月において大きな  $\delta D_F$  値を示した原因と



第8図 草地タワー(A地点)における水蒸気と
土壌水の δD と δD<sub>F</sub>の時系列

してはサンプリング高度と気温湿度観測高度の ずれの影響が考えられる. A 地点では TERC の ルーチン観測データの気温湿度を使用して混合比 を計算している. サンプリング地点の草地は4月 から6月にかけては草丈が低かったが,7~8月 になると草の成長によって地上1mのサンプリ ング高度が周囲のキャノピーよりも低くなってい た.気温湿度の測定高度は1.6mでキャノピーの 上部であったため,A 地点の1m高度において は水蒸気混合比の過小評価があったものと考えら れる.1m高度における水蒸気混合比の過小評価 は Keeling plot 解析において直線の傾きを大きく し,  $\delta D_F$  値の過大評価につながる. 正確な水蒸気 混合比の測定と,観測高度を増やすことでこの問 題は解決できる.

#### Ⅳ まとめ

以上の結果をまとめると、微気象学的スケー ルでは、同位体的に均質なバックグラウンド水蒸 気と1種類のローカルソース水蒸気との混合、す なわち鉛直一次元の二成分混合によって地上レベ ルの大気水蒸気の同位体組成が決まる.その際に バックグラウンド水蒸気の同位体組成の影響をよ り強く受ける.また、ローカルソース水蒸気の同



第9図 マイクロスケールにおける水蒸気同位体 組成の空間構造の模式図

位体組成は空間的に均質化されており,地表状態 の差異の影響は小さい.そのため2km以内のス ケールにおいて水蒸気同位体組成は水平方向に大 きな差異は示さない.ただし,キャノピー内部の ように周囲との水蒸気混合が起こりにくい場合に はバックグラウンド水蒸気の影響が小さくなり, ローカルソース水蒸気の影響が強く反映されるこ ともある(第9図).

さらに広いスケールについては別報にて論じる 予定である.

#### 謝辞

本研究を進めるにあたり,ご指導,ご助言をい ただいた筑波大学水文科学分野の諸先生方に感謝 いたします.特に,田中 正教授には TERC 松 林タワーの使用を許可していただき,飯田真一博 士にはタワーの使用にあたり便宜を図っていただ きました.水蒸気サンプリングの遂行にあたって は,教育研究科理科教育コースの綱川明芳氏,自 然学類地球科学専攻4年(当時)の涌井久司氏, 角張順一氏にお手伝いいただきました.同位体分 析については陸域環境研究センターの薮崎志穂氏 にご協力,ご助言をいただきました.ここに記し 厚く御礼申し上げます.

#### 文献

- 綱川明芳・山中 勤(2005):安定同位体分析の ための大気水蒸気サンプリング手法の信頼 性.水文水資源学会誌, 18, 306-309.
- 山中 勤・嶋田 純・宮岡邦任 (2001):関東平 野における暖候期のイベント降水同位体組 成の時空間変動.日本水文科学会誌, **31**, 123-133.
- He, H. and Smith, R. B. (1999): Stable isotope composition of water vapor in the atmospheric boundary layer above the

forest of New England. J. Geophys. Res., 104, 11657-11673.

- Keeling, C. D. (1961): The concentration and isotopic abundance of carbon dioxide in rural and marine air. *Geochim. Cosmochim. Acta*, 24, 277-298.
- Moreira, M., Sternberg, L. da S. L., Martinelli, L. A., Victoria, R. L., Barbosa, E. M., Bonates, L. C. M. and Nepstads, D. C. (1997): Contribution of transpiration to forest ambient vapor based on isotopic measurements. *Global*

Change Biology, 3, 439-450.

- Orlanski, I. (1975): A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56, 527-530.
- Yakir, D. and Wang, X. F. (1996): Fluxes of CO<sub>2</sub> and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. *Nature*, **380**, 515-517.

(2005年5月31日受付, 2005年8月23日受理)