タブレット野外風化実験にまつわるいくつかの問題点

Some Problems on Field Experiments on Weathering Rates Using Rock Tablets

松倉 公憲*·八反地 剛**

Yukinori MATSUKURA* and Tsuyoshi HATTANJI**

I はじめに

地形変化速度を議論する場合. その地形を構成 する岩石の風化速度がしばしば問題となる. しか し Brunsden (1979) や Kukal (1990) らの指摘 を待つまでもなく、自然条件下における風化速度 に関する定量的情報は極めて少ない. その原因 は、岩石の風化速度が極めて遅いことと、風化の 開始した時間や風化継続期間を特定することが困 難であることにある、そこで、従来、岩石の風化 速度のデータは建立年代の明かな墓石や石造建造 物などの損傷量を計測することによって得られて きた(松倉, 1994). しかしこの方法でも、墓石 や石造建造物の初期状態を厳密に復元することが 難しい(すなわち風化量の正確な見積もりが難し い)という問題を含んでいる。風化速度を知るた めのもう一つの方法が、岩石タブレットを用いた 野外実験である.この方法は、重量を計測した 岩石試料(タブレット)を野外の土層中に埋設 し、ある期間経過後に回収し、再度重量を計測す ることにより、その期間内での欠損重量から風 化速度を見積もるものである. この方法は野外 での風化をそのまま模擬している点で優れてい る. そこで, 筆者らも 10 年ほど前から, このタ ブレット風化実験を行ってきている. その初期の 5 年間の結果については, Matsukura and Hirose (1999) や Matsukura *et al.* (2001) で報告した. また, 10 年の結果についても現在まとまりつつ ある (Matsukura *et al.*, submitted). その過程に おいて, タブレット法によって解明できる点が多 いことも判ったが, 同時にこの方法のいくつかの 弱点・欠点も判ってきた. 本稿はそれらのことを まとめたものである.

リタブレット風化野外実験に関する研究のレビュー

1. 従来の研究

「タブレット風化実験」は、岩石試料(タブレッ ト型(円盤状)であることが多いが、直方体や場 合によっては不定形の試料が用いられることもあ る)を野外に埋設し、ある期間経過後、あるいは ある一定期間ごとにそれを回収し、重量の減少量 を計測することによって、岩石の風化量あるいは 風化速度を知るものである.この手法を最初に考 案したのは、Chevalier (1953)や Gams (1959a, b)

^{*} 筑波大学生命環境科学研究科

^{**} 筑波大学陸域環境研究センター(現:筑波大学生命環境科学研究科)

とされている(Trudgill, 1975). その後, それら をもとに Newson(1970)や Trudgill(1972)が 洗練された方法に改良した.

これまでのタブレット研究をまとめたのが,第 1表である(筆者らの研究については後述するの で,ここでは除いてある).以下では,研究の古 いものから順にその内容を紹介する.

地形学における最初のタブレットによる風化研 究の結果は Trudgill (1977) によって報告されて いる.彼は直径 1.5 cm,厚さ 0.5 cmの石灰岩タ ブレットをスコットランドの土壌と基岩の境界部 に1年間埋設した.その結果,溶食量(侵食量) として,夏の湿潤期(雨量が 32.5 mm/month) では 0.043 g/y , 冬の乾燥期(雨量が 22.5 mm/ month)では 0.01 g/y という値が得られた.

Caine (1979) は、コロラドの San Juan 山脈の 森林限界より高度の高い2つの地域の71箇所に、 破砕した(不定形試料)およそ 60gの流紋石英 安山岩を地表面に5年間露出させるという野外実 験を行った.その結果、平均の重量損失速度は 0.079 ± 0.012 %/y となった.さらに、時間とと もに重量損失速度が遅くなることもわかった.ま た、土壌の pH と土壌層中や土壌層の上を流れる 水の量や滞留時間等(これらは冬の雪の被覆の分 布にコントロールされている)が風化速度に影響 を与えることを考察している.

第1表 タブレット風化実験に関する従来の研究例

Reference	block, tablet or disc	rock type	buried position	period	environment	weight-loss ratio
Trudgill (1977)	tablet: $\phi = 1.5$ cm, $h=0.5$ cm	limestone	soil-bedrock interface	1 year	Scotland	0.01-0.043 g/y
Caine (1979)	6.3 mm fragments: 60 g	rhyodacite	on the soil surface	5 years	USA, Colorado	0.079 %/y
Jennings (1977 & 1981)	tablet: $40 \times 25 \times 10 \text{ mm}$	limestone cave stream	soil	3-7 years 0.27-0.67 %/y	Australia, Cooleman Plain	0.11-0.4 %/y
Crabtree and Burt (1983)	tablet: $\phi = 3.1$ cm, $h=0.7$ cm	sandstone	soil-rock interface	15 months	England, hillslope	0.24-0.34 %/y
Crabtree and Trudgill (1985) Trudgill <i>et al.</i> (1994)	tablet: φ =3.1 cm, <i>h</i> =0.7 cm	limestone 0.60 m deep alluvial so	soil-bedrock interface ils 10 years	2 years	England, hillslope	0.11-0.85 %/y 0.01-0.03 %/y
Campbell <i>et al.</i> (1987)	cube:	gypsum	25 cm deep in regolith	2 years	Sudan (semi-arid)	0.95-2.7 %/y
Hall (1990)	tablet: 5 \times 5 \times 2 cm	quartz-micashist	on the ground	5 years	Antarctic, Signy Island	0.02 %/y
Inkpen (1995)	tablet: $50 \times 50 \times 10$ mm	limestone	exposure to air	2 years	England, London	0.82-1.55 %/y
漆原ほか (1999 a, b)	tablet: $\phi = 4.0 \text{ cm}, h = 0.4 \text{ cm}$	limestone 土層 A 層 土層 B 層	地上 1.5 m	5 years	日本各地	0.3-0.86 %/y 0.42-1.32 %/y 0.60-1.53 %/y
Dixson <i>et al.</i> (2001)	6.3 mm fragments: 60 g	dolomite granite	on the ground	5 years	Sweden, Kärkevagge	0.326 %/y 0.121 %/y
Thorn <i>et al.</i> (2002)	disks: φ =4.0 cm, <i>h</i> =0.2-0.3 cm	dolomite granite limestone	soil horizon (shallow, intermediate, deep)	5 years	Sweden, Kärkevagge	0.473 %/y 0.032 %/y 1.104 %/y
Sumner (2004)	clast (100 - 370 g)	basalt (gray lava)	on the ground	3 years	Subantarctic, Marion Island	0.02-0.1 %/y
		basalt (black lava)				0.44-0.72 %/y
Plan (2005)	tablet: 5 \times 5 \times 1 cm	limestone dolostone	sub-soil, sub-arial	1 year	Austrian alps	1.1-4.8 cm/1000 y

Jennings (1981) は, オーストラリアの Cooleman Plain の土壌層と洞窟内の流水中に 40 × 25 × 10 mm の石灰岩タブレットを埋設し, 3 - 7 年間の溶食量を計測した. 溶食速度は重量損 失の割合として, %/y という単位が使われたが, この単位がその後の研究において多く使われるよ うになる. 土層中では 0.11 - 0.4 %/y であるの に対し, 洞窟の流水中では 0.27 - 0.67 %/y と若 干溶食速度が大きくなっている.

Crabtree and Burt (1983) は, 直径 3.1 cm, 厚さ 0.7 cm の砂岩タブレットをイングランド南 西部の丘陵斜面の土壤層 – 基岩の境界部に埋設し た. 15ヶ月間の溶食量を計測したが, その溶食速 度は 0.24 – 0.34 %/y と見積もられた. そして谷 底から遠い斜面上方ほど溶解量が増加することを 指摘した.

また、Crabtree and Trudgill (1985) は直径 3.1 cm, 厚さ 0.7 cm の石灰岩タブレットをイン グランド北部の丘陵斜面の深さ約 60 cm の土壌 層-基岩の境界部に埋設した。2年間の溶食量を 計測したが. 谷底に近い斜面の下部では溶食速度 が 0.11 %/y と比較的小さいのに対し、谷底から 遠い斜面上部では 0.85 %/y と大きいことを報告 した、この計測はその後も継続して行われ、そ の 10 年間の結果は Trudgill et al. (1994) によっ て報告されている、それによると、風化速度は 0.01 - 0.03 %/y と1 - 2 年の計測のそれより, かなり遅くなっている.計測期間が長くなって風 化速度が遅くなった理由は、以下のように考えら れている:(1)風化の初期は新鮮な面がでている ので風化が速いが、風化が進むとタブレットの表 面に風化皮膜が形成されて、そのために風化速度 が遅くなる;(2)風化が進むと風化によってでき たエッチピットに土が入り込み、洗浄してもそれ が除去できなくなることが多くなる、したがって 長期間の計測ほど重量損失の割合が少なくなり、 結果として風化速度が小さくなる;(3) 埋設に伴 う土層の攪乱が影響するかもしれない(短期間の

計測では、タブレットと土層の土との接触が少 なく、 土層の間隙を流れる水との接触する機会 が多くなるので風化速度が速くなる);(4)土壌 水分の変化; 1980年代後半から 1990年代前半が 乾燥した年が続いたので(計測は 1982 年 3 月か ら 1992 年 4 月まで). 乾燥した年の多かった後半 に風化速度が小さかった、ところで、タブレット の風化速度は、前述したように斜面の上部・下部 で異なるという空間分布が存在する. この分布に 影響を与えるのは、基岩との境界にある土層の pH, 炭酸の含有量, 水文条件である: すなわち, サイト1,2,3は平らな斜面の裾野で,pHが7 -8で斜面上方から横に水が流れる場であり、斜 面上方は炭酸の含有量が小さく pH が 5 – 6 で流 水は鉛直に浸透する場であり、これらの差異がタ ブレットの風化速度の差異を生じさせるという. この論文において、著者らは以下のような結論を 導いている:「タブレット実験は風化の絶対速度 に関しては信頼性のあるデータや時間変化に関す るデータを提供するというよりは空間分布の差異 に関する有用なデータを提供する |.

Campbell et al. (1987) は、スーダンの片麻岩 から成るインゼルベルクーペディメント斜面にお いて、重量 11g、表面積 37 cm³ の立方体の形状 をもつ石膏のタブレットを、インゼルベルク斜 面、ペディメント斜面および両者の接合部の合 計 3 箇所において、いずれもレゴリス層(深さ 25 cm)の中に埋設した. 2 年間の埋設により、 平均で 5.4%(インゼルベルク斜面:28 個のタブ レット)、2.0%(接合部:14 個)、1.9%(ペディ メント斜面:17 個)の重量損失が認められた. この結果から、ペディメントや接合部で風化量が 小さいのは、このような場所は水の浸透が少ない ためではないか、と考察した.

Hall (1990) は, 南極の Signy 島において, 5 × 5 × 2 cm の石英 – 雲母片岩のタブレットを地 表面に 5 年間露出させた. その結果 0.02 %/y と いう値が得られた. これらは物理風化 (凍結破 砕)による風化と考えられ,南極の海岸における 物理風化は比較的緩速度で進行していると判断さ れた.

Inkpen (1995)の実験は、タブレットを空中 に曝して、大気汚染や酸性雨による風化量を調べ る方法である.土木・建築の分野での、いわゆる 暴露実験に相当する.Portland Stone と Monks Park という2種類の石灰岩を使い、2年間の実 験をした.実験では、タブレットの暴露に対する 準備の段階、フレームに固定する段階、重量の再 計測の段階がそれぞれ計測結果にどのように影響 を与えるかについて評価した.実験の結果では、 すべての手順段階において統計学的に有意な差は なかったが、二つの岩石では、それぞれの段階に 対して異なった反応が認められた.このことはタ ブレットの風化の空間パターンを評価する上で、 岩石の性質が重要であることを示唆している.

漆原ほか(1999 a, b) は4種の石灰岩片(直径 40 mm,厚さ4 mm)を日本各地の7地点に設置 した.それぞれの地点において,地上1.5 m,A 層,B層の土層中の合計3点における溶食量の 計測を,1992年から1997年の5年間にわたって 行った.その結果,地上の溶食量は土層中の1/3 -1/2にすぎないこと,岩種別では中国・桂林産 の石灰岩が比較的溶食速度が大きいことがわかっ た.

Dixson *et al.* (2001) は、スウェーデンの Kärkevagge(北極圏の高山地域に相当)の谷に おいて、平均で 6.3 mm の粒径をもつドロマイト と花崗岩の岩石破片(およそ 60 g)を5年間曝 した. その結果、ドロマイトの重量損失速度は 平均して 0.326 ± 0.115 %/y,花崗岩では 0.121 ± 0.020 %/y という値が得られた. 彼ら(Thorn *et al.*, 2002)は同じ場所で、同じ時期に、直径 4 cm、厚さ 0.2 - 0.3 cm のディスクを地中の浅い ところ、深いところ、その中間の 3 箇所の深さ (最大で 0.5 - 0.6 m)に埋設した. 岩石の種類は ドロマイト、花崗岩にさらに石灰岩を加えた 3 種 類である. その結果, ドロマイトと石灰岩はそれ ぞれ0.473 ± 0.145 %/y, 1.104 ± 0.446 %/y と風 化速度が大きいのに対し, 花崗岩は0.032 ± 0.005 %/y と小さかった. 排水の悪い, すなわち湿っ た場所とか pH の小さい(酸性)場所では, ドロ マイトの風化が促進される. 個々の場所における 地表と地中の風化速度には, ドロマイトのケース では相関が認められるが, 花崗岩ではそれが認め られなかった.

Sumner (2004) は 100 - 370 g の玄武岩(灰 色熔岩と黒色熔岩の 2 種類)の砕屑物を,南極に 近い Marion 島において海岸から内陸の高山の方 向の高度の異なる 4 箇所の地表に曝した.灰色熔 岩の重量損失速度は海岸で 0.02 %/y であり,高 度 730 m の場所では 0.10 %/y となった.黒色熔 岩の平均重量損失速度は 0.72 %/y であり,高度 依存性は認められなかった.また海水飛沫帯にお ける重量損失を 1 年間モニタリングしたところ, 灰色熔岩では 0.30 %,黒色熔岩では 0.41 % で あった.

Plan (2005) は,70 個の石灰岩・苦灰岩 (dolostone)のタブレット(5×5×1 cm:片面 にはワニスを塗っている)をオーストリア・アル プスの13箇所(高度 660 ~ 2153 mの間に 500 m の高度差ごとの所)に埋設した.大部分は10 cm の深さの土壌中であるが,2つのセットは地表上 に,1つのセットはドリーネの中に埋設した.1 年間の埋設から得られた結果をもとに計算された 溶食速度は,地上で1.3 - 4 cm/ky,土壌中で1.1 cm/ky,ドリーネの中で 4.8 cm/ky となった.こ の論文では,これらの溶食速度のほかに,以下の ような議論がなされている:

- ドロマイトは溶けにくい(ドロマイトは石灰 岩の43%).
- (2) 石灰岩でも SiO₂ を含むものは溶解しにくい 可能性がある.
- (3) タブレットの表面を磨いたものは、切りっぱ なしのものより溶けにくい.

- (4) 地中のタブレットにおいては、高度が高いほ ど溶解が大きい、地上のタブレットは、高 度に影響されない。
- (5) ドリーネの中に埋設したものは溶解が速い: ドリーネは水が集中するからと思われるが, このことはカルスト地形の self organization (自己組織)を示唆している.
- (6) 溶食速度にあたえる植生の影響は小さい.

そして,水文データから計算された流域の低下 速度は9.5 cm/1000 年であり,タブレットから見 積もられた最大のもの(ドリーネのそれを除く) より2.5 倍の速度となった.

2. 従来の研究によって得られた知見

第1表にまとめたように、タブレット実験と いっても、従来の研究のそれぞれにおいて、その 実験条件は多様である。たとえば、岩石試料の形 状についてみると、タブレット(円盤状)、立方 体, 直方体, 不定形のものと多様であり, しかも 同じ形状であっても研究者によりその大きさが異 なっている. 使われる岩石試料の岩種としては. 石灰岩やドロマイトなどの炭酸塩岩が多い.これ は炭酸塩岩が水が関与する風化に対して敏感であ る(すなわち風化速度が速い)ことと無関係では ないであろう. 試料の設置場所としては、地上1.5 mの空中(漆原ほか, 1999 a, b)を除いては、ほ とんどが地上か地中(土層中, とくに土層と基岩 との境界部分)である、実験期間は最低でも1年 であり、長いものでは5年となっている、風化環 境としては, Hall (1990) が南極の Signy 島にお いて石英-雲母片岩のタブレットを地上に5年間 暴露したものがあり、凍結破砕等の物理的風化速 度を計測しているが、その他の研究は主として岩 石の溶食速度(すなわち主に化学的風化速度)を 計測したものと理解される.

得られた結果の中で,最も大きい風化速度の 値は,Thorn *et al.* (2002)の1.104 %/y(石灰 岩)である.また,石灰岩に比較してドロマイ トは風化速度が小さい(たとえば、Plan, 2005; Thorn *et al.*, 2002)とか、斜面の位置によって風 化速度が異なる(たとえば、Crabtree and Burt, 1983; Crabtree and Trudgill, 1985; Campbell *et al.* 1987),風化速度は計測時間が長いほど小さくな る(Caine, 1979; Trudgill *et al.*, 1994)といったよ うな結果が示されている.しかし、Plan(2005) も指摘しているように、風化速度(重量損失速度) は、高度・埋設深度(あるいは地表か地中か)・ 植生・地形・土壌水分・岩質・岩石表面形態など 多くの要素に影響されている.したがって、従来 得られた結果をもとに、これらを統一的に理解し ようとすることは現状では不可能であろう.

Ⅲ 阿武隈におけるタブレット風化実験

1. 実験目的と実験方法

石灰岩が溶解しやすいということは、よく知ら れている.しかし、石灰岩が他の岩石に比較して どれだけ溶解しやすいのか、あるいは逆に石灰岩 以外の岩石がどれだけ溶解し難いのかについて は、よく判っていない.すなわち、上述したよう に、従来のタブレット研究では、岩石が異なると 重量損失速度にどのような差異があるかの研究 は極めて少ない.そこで筆者らはまずそのこと を研究テーマにしようと考えた(Matsukura and Hirose, 1999; Matsukura *et al.*, 2006). 試料とし ては、花崗岩、花崗閃緑岩、ハンレイ岩、石灰岩、 安山岩、流紋岩、結晶片岩、凝灰岩の8岩型を選 んだ(これらの鉱物組成、化学組成、物理的性質・ 力学的性質をまとめたのが、第2表である).

次に、これをどこに置いて観測するかを考えた.従来の研究から、土層の深さによる風化速度の違いがあり、その違いには土壌水分の影響が大きいことも指摘されている(たとえば、Jennings、 1981).したがって、飽和帯と不飽和帯における 差異も気になった.そこで、地上、不飽和帯、 不飽和帯、飽和帯中の4ヶ所に埋設することにし

第2表 タブレット実験に使用した岩石の鉱物学的・物理的・化学的・力学的諸性質(after Matsukura et al., 2006)

	Granite (Cretaceous)	Granodiorite (Jurassic)	Gabbro (Jurassic)	Limestone (Triassic?)	Andesite (Pleistocene)	Rhyolite (Holocene)	Tuff (Neogene)	Crystalline schist (Paleozoic)
	Qtz	Qtz	Pl	Cal	Pl	Qtz	Qtz	Pl
Mineral	Kfs	Kfs	Hbl	Dol	Px	Kfs	Kfs	Am
composition ^a	Pl	Pl	Px		Mg	Pl	Pl	Chl
	Bt	Bt			Ol	Bt	Cpl	
		Hbl						
SiO ₂	70.98	66.41	46.83	0.09	53.00	76.67	79.54	46.80
TiO ₂	0.36	0.75	1.29	-	0.87	0.10	0.14	0.79
Al_2O_3	14.81	14.52	17.95	0.04	21.00	11.89	11.42	14.70
Fe ₂ O ₃ +FeO	2.84	3.87	11.23	0.03	9.40	0.75	1.17	12.52
MnO	0.07	0.08	0.23	-	0.15	0.06	0.02	0.20
MgO	0.82	2.09	7.82	0.83	2.30	0.13	0.62	14.40
CaO	3.26	4.44	12.87	52.00	7.80	0.70	2.02	8.53
Na ₂ O	4.07	3.19	1.49	0.20	3.00	4.25	2.15	2.01
K ₂ O	2.68	3.40	0.11	0.00	1.80	3.23	2.92	0.00
P_2O_5	0.12	0.24	0.16	0.01	-	0.02	0.02	0.05
H ₂ O(-)	-	-	-	-	-	0.16	-	
H ₂ O(+)	-	-	-	-		2.03	-	-
(CO ₂)	-	-	-	47.00		-	-	-
Total (wt.%)	100.01	98.99	99.98	100.20	99.32	99.99	100.02	100.00
Bulk density (g/cm3)	2.67	2.69	3.00	2.71	2.14	1.60	1.45	2.86
Specific gravity	2.71	2.76	3.05	2.75	2.62	2.42	2.48	2.87
Porosity (%)	1.51	2.36	1.58	1.48	18.29	33.87	41.32	0.24
Equotip hardness	720	731	711	486	652	480	438	625

a Qtz: quartz, Kfs: K-feldspar, Pl: plagioclase, Bt: biotite, Hbl: hornblende, Px: pyroxene, Cal: calcite, Dol: dolomite,

Mg: magnetite, Ol: olivine, Cpl: clinoptilolite, Am: amphibole, Chl: chlorite

た. すなわち筆者らの実験は, 岩型(岩質)の影響と場所(風化環境)の影響の二つを明らかにしようとしたものである.

以上のように、風化速度に対する、岩型の違い と場の条件(風化環境)の違いによる影響を明ら かにするため、岩石タブレットを用いた野外実験 を行った.上述した8岩型を、直径3.45 cm,厚 さ約1 cm に成形したものを各岩型ごとに60 個 用意した.水洗、炉乾燥した後、15 個づつを1 つのセットにし、重量を計測し初期試料とした. 8岩型ごとに1セット(15 個のタブレット)づつ をメッシュの袋に入れ、阿武隈山地の花崗閃緑 岩を基盤とする斜面の、地上、不飽和帯(15 cm 深)、不飽和帯(60 cm 深)、飽和帯中と4ヶ所に 埋設した.実験は1992 年の年末から開始し、約 3ヶ月あるいは半年毎に繰り返し重量計測を行っ た.

2. 実験結果および考察

現在までの約10年間の計測の結果をまとめた のが,第1図である.重量損失はほぼ等速にお こっているとみなせるので,以下では単純に年平 均損失率で議論することにする.第3表にその値 を示した(この表には最初の5年の年平均損失率 も併記した).

設置場所の違いを無視して、岩型別に重量欠 損率を単純に平均化すると、凝灰岩(Tf)が最 も大きく(1.027 %/y)、次いで石灰岩(Ls, 0.861 %弱)、流紋岩(Ry, 0.324 %)、花崗閃緑岩(Gd, 0.115 %)、安山岩(An)、結晶片岩(Cs)、ハン レイ岩(Gb)、花崗岩(Gr)という順になる.す なわち、Tf>Ls>Ry>Gd>An>Cs>Gb>Grの順 序である.しかしこの順序は、設置場所別にみる と同じではない.たとえば、飽和帯においては Ls>Tf>>Gd>Ry>Cs>Gb>Gr>Anとなり、地上 でTf>Ry>Ls>An>Gd、Cs>Gb>Grとなる.ま た、設置場所ごとの単純平均では、飽和帯が最も

第1図 10年間の重量変化 (after Matsukura et al., 2006)

第3表	10年間の欠損重量速度	(風化速度)	(括弧内は最初の5	(年間の風化速度)	(単位:%/v)	(after Matsukura et al.,	. 2006)
-----	-------------	--------	-----------	-----------	----------	--------------------------	---------

Rock type	Ground surface	Humus soil layer	Unsaturated grus layer	Saturated grus layer	Mean for the four settlements
Granite	0.012 (0.011)	0.014 (0.015)	0.013 (0.014)	0.017 (0.020)	0.014 (0.015)
Granodiorite	0.023 (0.019)	0.017 (0.018)	0.015 (0.016)	0.403 (0.397)	0.115 (0.113)
Gabbro	0.017 (0.016)	0.016 (0.018)	0.015 (0.016)	0.024 (0.031)	0.018 (0.020)
Limestone	0.218 (0.110)	0.071 (0.082)	0.098 (0.094)	3.058 (3.672)	0.861 (0.990)
Andesite	0.053 (0.091)	0.070 (0.125)	0.043 (0.070)	0.005 (0.002)	0.043 (0.072)
Rhyolite	0.394 (0.538)	0.302 (0.435)	0.349 (0.426)	0.249 (0.342)	0.324 (0.438)
Tuff	1.013 (1.274)	0.480 (0.660)	0.665 (0.808)	1.949 (2.290)	1.027 (1.258)
Crystalline schist	0.023 (0.025)	0.021 (0.024)	0.019 (0.019)	0.034 (0.048)	0.024 (0.029)
Mean of all rocks	0.219 (0.261)	0.124 (0.170)	0.152 (0.181)	0.717 (0.850)	0.303 (0.366)

大きく(0.717%),次いで地上(0.219%),不飽 和帯(0.152%),腐植直下(0.124%)の順となり, すなわち飽和帯 > 地上 > 不飽和帯 > 土壌帯の順 になる.しかし岩型によっては最大値をとるのが 飽和帯でないものもある.たとえば,Ryは地上 での損失率が最も大きく,Anでは土層中が最も 大きい.以上のことから重量損失は岩型と風化環 境の両者に強く依存していることが伺われる.

そこで次に、風化速度と埋設場所との関わりを 岩型別にみていくと、大きく次のような3つのタ イプに分類された.1)飽和帯のみが特に大きく変 化したもの(石灰岩,花崗閃緑岩),2)どの場所 でも比較的大きく変化したもの(凝灰岩,流紋 岩),3)どの場所でも変化の小さかったもの(花 崗岩,ハンレイ岩,結晶片岩,安山岩),の3つ である.以下にそれぞれのタイプごとに詳細に検 討する.1)の飽和帯のみが特に大きく変化したの は、石灰岩と花崗閃緑岩である.これらの風化は 化学的風化によるものと思われる.とくに石灰岩 は飽和帯以外の欠損重量が極めて小さいので、飽 和帯以外では溶解があまり働かないようである.

2)のどの場所でも比較的風化速度が大きいものと して凝灰岩と流紋岩がある.これらの岩石は,間 隙率が大きく,強度が弱いという物性をもつこと が共通している.また,3)のどの場所でも風化速 度が遅いものとしては,安山岩,結晶片岩,花崗 岩,ハンレイ岩がある.安山岩はかなりポーラス であり,他の岩石と間隙率は異なっているが,強 度(エコーチップ硬度:L値)をみると他の3岩 型とほぼ類似の大きな値をもっている.

以上のような風化速度の結果をもとに、風化速 度が何によってコントロールされているかを検討 した.間隙率(n)を強度(L値)で割った指標 と風化速度の関係をみたのが第2図である.この 図によれば、飽和帯のデータ(第2図B)はラン ダムにプロットされ、全く傾向が認められない が、その他の場所のデータ(第2図A)では、 横軸の値が大きくなると風化速度が大きくなる関 係が認められた. 横軸の指標は, Matsukura and Matsuoka (1996) などで提案されている易風化 指数に相当するものであり, 一種の物理風化のし 易さを表すものである. したがって, この図か ら, 飽和帯以外の場所における風化としては, 物 理的風化作用の関与が示唆された. しかし, この 場所でどのような物理的風化作用が生起している かについては情報が少なく, 現状ではこれ以上の 議論はできない.

Ⅳ おわりに:タブレット風化実験の問題点

||では、従来のタブレット実験のレビューを し、川では阿武隈山地における著者らによる10 年にわたるタブレット風化実験の概略を示した. これらの研究をとおして、タブレット実験の長所 とともにいくつかの短所・欠点(問題点)も明か となってきた、タブレット実験では、岩石の野外 での風化速度を直接計測することが可能であり. その点は長所であろう、しかし、タブレット実験 は野外実験であるが故に、それのみでは物理風化 と化学風化のどちらが卓越して働いているのか. 両者の割合を特定できないという欠点を併せ持っ ている.また、データを得るためには数年の長さ が必要であり、かなり長期の研究計画を立てなけ ればならないという短所もある. それ以外にも. タブレットの形状から派生する問題もあるようで ある.以下にそのことを議論したい.

Yokoyama and Matsukura (2006) は、野外実 験で使用したものと同じ花崗閃緑岩のタブレット を用いて室内で溶解実験(化学的風化速度に関 する実験)を行った. 4 つのタブレットを 100 ml のプラスチックの容器にお互いが接触しないよ うに立て、そこに野外と同じ条件の pH6 – 7 の 蒸留水を 29 ± 1 ml d⁻¹を流す流通系の実験をお こなった. 温度は 20℃であり、撹拌や振とうは 行わない. この結果では、2.1 × 10⁻⁵ wt% d⁻¹ と なった. これに対して、野外実験では 1.2 × 10⁻³

第2図 易風化指数と風化速度との関係:
(A)地上,土層,不飽和帯における結果,
(B)飽和帯における結果 (after Matsukura *et al.*, 2006)

wt% d⁻¹となり, 野外の方が 50 倍も風化(重量 損失)が速いことがわかった.

このような野外と室内の実験結果の差異につい て、Yokoyama and Matsukura (2006) は以下の ような観察をもとに以下のように考察した:

(1) 10年の野外実験終了後のサンプルには,風 化によって雲母が剥落したと思われる多くの穴が 観察された.そこで,タブレットの上面の1×2 cmの範囲において 3Dスキャナーを用いて穴の 形状を把握した.その結果,穴の合計体積は 5.59 (mm³) と見積もられた.したがって,もしこ のような穴の形成がタブレットの全表面積(31 cm²)において起こると仮定すると、穴の全体積 は 5.59/2 × 31/1000 = 0.087 cm³ となり、黒雲母 の密度を 2.83 g/cm³ とすると、2.83 × 0.087 = 0.25 g の重量損失があったと計算される.一方、実際 の野外における欠損重量は 10 年間で 4.0% であ り、タブレット 1 個(30 g)あたりの欠損重量は 30 × 0.04 = 1.2 g ということになる.したがって 全損失量の 79% [= (1.2 - 0.25) /1.2 × 100]が エッジでの損失であり、21% だけが表面からの 損失となる.

(2) 10年間野外実験をしたタブレットを一週間 蒸留水に浸しておいたのちに、タブレットを水か ら引き上げると、ビーカーの底に黒雲母の粒子が 何個も残留した.このことはタブレットから黒雲 母がすでに分離していたことを示す.

上記(1),(2)の観察から,黒雲母の離脱は, 鉱物の粒界が溶解することと一つの黒雲母粒子の 中での劈開での分離などによって起こると思われ る.すなわち室内実験は純然たる化学的風化速度 を計測しているが,野外実験では化学的風化のほ かに黒雲母の離脱を促す,何らかの物理的プロセ ス(侵食プロセスやタブレット洗浄の際の人為的 作用?など)が働いているのであろう.このよう な物理的プロセスはタブレットの面よりエッジの 部分で作用しやすいので,野外の風化実験での風 化速度が大きくなる,というものである.

以上の議論は、風化速度にタブレットの形状が 大きく影響していることを示唆している.すなわ ち、タブレットには上下の円周の周囲にあるエッ ジにおいて風化が極度に速くなるという問題であ る.このことは同時に、回収して洗浄するときに 剥離しそうな鉱物を物理的(人為的)に剥がして いるのではないかという危惧も抱かせる.この点 は今後に残された課題である.

そして,最後に指摘しておきたいのは,第1図 にも表されているのであるが,凝灰岩・安山岩な どで,前回の計測より重量が増加することがある ことである.このことは,重量計測の誤差では説 明できないものであり,これらの岩石の間隙が多い(大きい)ことから,目詰まりをおこしている ことが考えられる.とくに5月の計測時に重量が 増加することが多く,その原因については不明で ある.この解明も今後に残された課題である.

いずれにしても、タブレット実験は研究者によ り、さまざまな形状と岩種を使用していることか らデータを比較できないという問題が生ずる.こ のような問題を解決するためには、試料の大きさ や表面状態、埋設の場所等に関するスタンダード な実験方法を確立する必要があるのではないだろ うか.

謝辞

本研究を行うに際し、学術振興会・科学研究 費・基盤研究B(課題番号16300292研究代表者・ 松倉公憲)を使用した.

文献

- 漆原和子・鹿島愛彦・榎本浩之・庫本 正・フラ ンツディーター ミオトケ・仲程 正・比嘉正 弘(1999 a):日本における石灰岩溶食率の経 年変化とその地域性.地学雑誌, 108, 45-58.
- 漆原和子・榎本浩之・鹿島愛彦(1999b):岩種に よる石灰岩片の溶食率とその溶食形態の差. 日本地理学会講演要旨集, No.55, 330-331.
- 松倉公憲(1994):風化過程におけるロックコン トロール:従来の研究の動向と今後の課題. 地形, 15, 203-222.
- Brunsden, D. (1979): Weathering. In: Embleton, C. and Thornes, J.(eds): Process in geomorphology: 73-129; Edward Arnold, London.
- Caine, N. (1979): Rock weathering rates at the soil surface in an alpine environment. *Catena*, 6,

131-144.

- Campbell, M. D., Shakesby, R. A. and Walsh, R. P. D. (1987): The distribution of weathering and erosion on an inselbergs-pediment system in semi-arid Sudan. In Gardiner, V. ed. *International Geomorphology 1986 Part II*, John Wiley & Sons, 1249-1270.
- Chevalier, P. (1953): Erosion or corrosion? Proceedings of the International Speleological Conference, Paris, 1, 35-40.
- Crabtree, R. W. and Burt, T. P. (1983): Spatial variation in solutional denudation and soil moisture over a hillslope hollow. *Earth Surface Processes and Landforms*, **8**, 151-160.
- Crabtree, R. W. and Trudgill, S. T. (1985): Chemical denudation on a Magnesian Limestone hillslope, field evidence and implications for modeling. *Earth Surface Processes and Landforms*, **10**, 331-341.
- Dixson, J. C., Thorn, C. E., Darmody, R. G. and Schlyter, P. (2001): Weathering rates of fine pebbles at the soil surface in Kärkevagge, Swedeish Lapland. *Catena*, **45**, 273-286.
- Gams, I. (1959 a): Experimental with tablets in the Podpeska cave. *Nase Jame*, **2**, 76-77 (in Slovene).
- Gams, I. (1959 b): On the situation and genesis of the longest Slovene cave. *Nase Jame*, **1**, 4-9 (in Slovene).
- Hall, K. (1990): Mechanical weathering rates on Signy Island, maritime Antarctic. *Permafrost* and Periglacial Processes, 1, 61-67.
- Inkpen, R. (1995): Errors in measuring the percentage dry weight change of stone tablets. *Earth Surface Processes and Landforms*, 20, 783-793.
- Jennings, J. N. (1977): Limestone tablet experiments at Cooleman Plain, New South

Wales, Australia and their implications. *Abhandlungen zur Karst-und Höhlenkunde Reiche A-Speläologie*, **15**, 26-38.

- Jennings, J. N. (1981): Further results from limestone tablet experiments at Cooleman Plain. Australian Geographical Studies, 19, 224-227.
- Kukal, Z., ed. (1990): The rate of geological processes. *Earth Science Reviews*, 28 (Special Issue), 7-258.
- Matsukura, Y. and Hirose, T. (1999): Five year measurements of rock tablet weathering on a forested hillslope in a humid temperate region. *Engineering Geology*, **55**, 69-76.
- Matsukura, Y. and Matsuoka, N. (1996): The effect of rock properties on rates of tafoni growth in coastal environments. *Zeitschrift für Geomorphologie, N.F., Suppl. Bd.*, **106**, 57–72.
- Matsukura, Y., Hirose, T. and Oguchi, C. T. (2001): Rates of chemical weathering of porous rhyolite: 5-year measurements using the weight-loss method. *Catena*, **43**, 341-347.
- Matsukura, Y., Hattanji, T., Oguchi, C. T. and Hirose, T. (2006): Ten year measurements of weathering rates of rock tablets on a forested hillslope in a humid temperate region, Japan. *Zeitschrift für Geomorphologie*, *N.F.* (in press).
- Newson, M. D. (1970): Studies in chemical and mechanical erosion by streams in limestone terrains. Unpublished Ph.D.thesis, University of Bristol.
- Plan, L. (2005): Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. *Geomorphology*, 68, 201-212.

- Sumner, P. D. (2004): Rock weathering rates on subantarctic Marion Island. Arctic, Antarctic and Alpine Research, 36, 123-127.
- Thorn, C. E., Darmody, R. G., Dixson, J. C. and Schlyter, P. (2002): Weathering rates of buried machine-polished rock disks, Kärkevagge, Swedeish Lapland. *Earth Surface Processes* and Landforms, 27, 831-845.
- Trudgill, S. T. (1972): Quantification of limestone erosion in intertidal, subsoil environments with special reference to Aldabra Atoll, Indian Ocean. *Transactions of the Cave Research Groups of Great Britain*, 14-2, 176-179.
- Trudgill, S. T. (1975): Measurement of erosional weight loss of rock tablets. *British Geomorphological Research Group Technical Bulletin*, 17, 13–20.
- Trudgill, S. T. (1977): Problems in the estimation of short-term variations in limestone erosion processes. *Earth Surface Processes*, 2, 251-256.
- Trudgill, S. T., Crabtree, R. W., Ferguson, R. I., Ball, J. and Gent, R. (1994): Ten year remeasurement of chemical denudation on a Magnesian Limestone hillslope. *Earth Surface Processes and Landforms*, 19, 109-114.
- Yokoyama, T. and Matsukura, Y. (2006): Field and laboratory experiments on weathering rates of granodiorite: separation of chemical and physical processes. *Geology*, (in press).

(2006年5月31日受付, 2006年8月7日受理)